\(\frac{5x^2+10xy+5y^2}{3x^3+3y^3}\)

\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2015

\(\frac{5x^2+10xy+5y^2}{3x^3+3y^3}=\frac{5\left(x^2+2xy+y^2\right)}{3\left(x^3+y^3\right)}=\frac{5\left(x+y\right)^2}{3\left(x+y\right)\left(x^2-xy+y^2\right)}=\frac{5\left(x+y\right)}{3\left(x^2-xy+y^2\right)}\)

\(\frac{-15x\left(x-y\right)}{3\left(y-x\right)}=\frac{15x\left(y-x\right)}{3\left(y-x\right)}=\frac{15x}{3}\)

1 tháng 12 2019

a) \(=\frac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)

\(=\frac{7\left(x+y\right)}{-3\left(x+y\right)}=\frac{-7}{3}\)

b)\(=\frac{3x\left(x+y\right)}{y}\)

c) \(\frac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}\)

\(=\frac{8\left(x-y\right)}{10\left(x-y\right)}=\frac{4}{5}\)

1 tháng 12 2019

a) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7\left(x+y\right)}{-3\left(x+y\right)}=-\frac{7}{3}.\)

b) \(\frac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}=\frac{3x\left(x+y\right)}{y}=\frac{3x^2+3xy}{y}\)

c) \(\frac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\frac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}=\frac{8\left(x-y\right)}{10\left(x-y\right)}=\frac{4}{5}\)

d) \(\frac{3\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}=\frac{x-z}{2}\)

h) \(\frac{3x\left(1-x\right)}{2\left(x-1\right)}=-\frac{3x\left(x-1\right)}{2\left(x-1\right)}=\frac{-3x}{2}\)

j) \(\frac{6x^2y^2}{8xy^5}=\frac{3x}{4y^3}\)

Câu b) bạn xem lại nhé.

Học tốt ^3^

12 tháng 9 2016

Ta có

\(\frac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)\(\frac{2y}{3\left(x+y\right)^2}\)

\(\frac{x^2+2x+1}{5x^3+5x^2}=\frac{\left(x+1\right)^2}{5x^2\left(x+1\right)}=\frac{x+1}{5x^2}\)

14 tháng 2 2020

Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\) 

 \(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)

\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\) 

 \(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)

\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\) 

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)

27 tháng 3 2020
https://i.imgur.com/PTEMisy.jpg
27 tháng 3 2020

https://hoc24.vn/hoi-dap/question/697806.html

17 tháng 8 2020

a) \(4x^2\left(5x^3-2x+3\right)\)

\(=20x^5-8x^3+12x^2\)

b) \(3y^2\left(4y^3+\frac{2}{3}y^2-\frac{1}{3}\right)\)

\(=12y^5+2y^4-y^2\)

c) \(\left(5x^2-4x\right)\left(x-2\right)\)

\(=5x^3-14x^2+8x\)

d) \(\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+22x-55-6x^2-23x-21\)

\(=-x-76\)

17 tháng 8 2020

1, \(4x^2\left(5x^3-2x+3\right)=20x^5-8x^3+12x^2\)

2, \(3y^2\left(4y^3+\frac{2}{3}y^2-\frac{1}{3}\right)=12y^5+2y^4-y^2\)

3, \(\left(5x^2-4x\right)\left(x-2\right)=5x^3-10x^2-4x^2+8x=5x^3-14x^2+8x\)

4, \(\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)=6x^2+33x-10x-55-\left(6x^2+14x+9x+21\right)\)

\(=6x^2+23x-55-6x^2-23x-21=-76\)

11 tháng 7 2019

\(a,3x^3y^3-15x^2y^2=3x^2y^2\left(xy-5\right)\)

\(b,5x^3y^2-25x^2y^3+40xy^4\)

\(=5xy^2\left(x^2-5xy+8y^2\right)\)

\(c,-4x^3y^2+6x^2y^2-8x^4y^3\)

\(=-2x^2y^2\left(2x-3+4x^2y\right)\)

\(d,a^3x^2y-\frac{5}{2}a^3x^4+\frac{2}{3}a^4x^2y\)

\(=a^3x^2\left(y-\frac{5}{2}x^2+\frac{2}{3}ay\right)\)

\(e,a\left(x+1\right)-b\left(x+1\right)=\left(x+1\right)\left(a-b\right)\)

\(f,2x\left(x-5y\right)+8y\left(5y-x\right)\)

\(=2x\left(x-5y\right)-8y\left(x-5y\right)=\left(x-5y\right)\left(2x-8y\right)\)

\(g,a\left(x^2+1\right)+b\left(-1-x^2\right)-c\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(a-b-c\right)\)

\(h,9\left(x-y\right)^2-27\left(y-x\right)^3\)

\(=9\left(x-y\right)^2+27\left(x-y\right)^3\)

\(=9\left(x-y\right)^2\left(1+3x-3y\right)\)

11 tháng 7 2019

a,3x3y315x2y2=3x2y2(xy5)a,3x3y3−15x2y2=3x2y2(xy−5)

b,5x3y225x2y3+40xy4b,5x3y2−25x2y3+40xy4

=5xy2(x25xy+8y2)=5xy2(x2−5xy+8y2)

c,4x3y2+6x2y28x4y3c,−4x3y2+6x2y2−8x4y3

=2x2y2(2x3+4x2y)=−2x2y2(2x−3+4x2y)

d,a3x2y52a3x4+23a4x2yd,a3x2y−52a3x4+23a4x2y

=a3x2(y52x2+23ay)=a3x2(y−52x2+23ay)

e,a(x+1)b(x+1)=(x+1)(ab)e,a(x+1)−b(x+1)=(x+1)(a−b)

f,2x(x5y)+8y(5yx)f,2x(x−5y)+8y(5y−x)

=2x(x5y)8y(x5y)=(x5y)(2x8y)=2x(x−5y)−8y(x−5y)=(x−5y)(2x−8y)

g,a(x2+1)+b(1x2)c(x2+1)g,a(x2+1)+b(−1−x2)−c(x2+1)

=(x2+1)(abc)=(x2+1)(a−b−c)

h,9(xy)227(yx)3h,9(x−y)2−27(y−x)3

=9(xy)2+27(xy)3

7 tháng 11 2017

1)

a) \(\dfrac{5x}{10}=\dfrac{x}{2}\)

b) \(\dfrac{4xy}{2y}=2x\left(y\ne0\right)\)

c) \(\dfrac{21x^2y^3}{6xy}=\dfrac{7xy^2}{2}\left(xy\ne0\right)\)

d) \(\dfrac{2x+2y}{4}=\dfrac{2\left(x+y\right)}{4}=\dfrac{x+y}{2}\)

e) \(\dfrac{5x-5y}{3x-3y}=\dfrac{5\left(x-y\right)}{3\left(x-y\right)}=\dfrac{5}{3}\left(x\ne y\right)\)

f) \(\dfrac{-15x\left(x-y\right)}{3\left(y-x\right)}=-5x\dfrac{x-y}{y-x}=-5x\dfrac{x-y}{-\left(x-y\right)}\)

\(=-5x.\left(-1\right)=5x\left(x\ne y\right)\)

2)

a) Nhớ ghi ĐK vào nhá, lười quá :V\(\dfrac{x^2-16}{4x-x^2}=-\dfrac{\left(x-4\right)\left(x+4\right)}{x^2-4x}=\dfrac{\left(x-4\right)\left(x+4\right)}{x\left(x-4\right)}=\dfrac{x+4}{x}\)

b) \(\dfrac{x^2+4x+3}{2x+6}=\dfrac{x^2+3x+x+3}{2\left(x+3\right)}=\dfrac{x\left(x+3\right)+\left(x+3\right)}{2\left(x+3\right)}\)

\(=\dfrac{\left(x+3\right)\left(x+1\right)}{2\left(x+3\right)}=\dfrac{x+1}{2}\)

c) \(\dfrac{15x\left(x+3\right)^3}{5y\left(x+y\right)^2}=\dfrac{3x\left(x+3\right)^3}{y\left(x+y\right)^2}\) ( câu này có gì đó sai sai )

d) \(\dfrac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\dfrac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}\)

\(=\dfrac{8\left(x-y\right)}{10\left(x-y\right)}=\dfrac{8}{10}=\dfrac{4}{5}\)

e) \(\dfrac{2x+2y+5x+5y}{2x+2y-5x-5y}=\dfrac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)

\(=\dfrac{7\left(x+y\right)}{-3\left(x+y\right)}=-\dfrac{7}{3}\)

12 tháng 9 2016

Ta có

\(\frac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)\(\frac{2y}{3\left(x+y\right)^2}\)

\(\frac{7x^2+14x+7}{3x^2+3x}=\frac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\frac{7\left(x+1\right)}{3x}\)

12 tháng 9 2016

a) = 2y/3(x+y)2

b) = 7(x+1)/3x

27 tháng 11 2016

\(\frac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)

\(=\frac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)\left(x+y\right)^2}\)

\(=\frac{10y}{15\left(x+y\right)^2}\)

\(\frac{x^2-xy-x+y}{x^2+xy-x-y}\)

\(=\frac{\left(x^2-x\right)-\left(xy-y\right)}{\left(x^2-x\right)+\left(xy-y\right)}\)

\(=\frac{x\left(x-1\right)-y\left(x-1\right)}{x\left(x-1\right)+y\left(x-1\right)}\)

\(=\frac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}\)

\(=\frac{x-y}{x+y}\)

27 tháng 11 2016

a)\(\frac{2xy}{3\left(x+y\right)^2}\)

b)=\(\frac{\left(x^2-xy\right)-\left(x-y\right)}{\left(x^2+xy\right)-\left(x+y\right)}\)=\(\frac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}\)

=\(\frac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}\)=\(\frac{\left(x-y\right)}{\left(x+y\right)}\)