Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2-3x+2}{x^3-1}=\frac{x^2-2x-x+2}{\left(x-1\right).\left(x^2+x+1\right)}\)
\(=\frac{x.\left(x-2\right)-\left(x-2\right)}{\left(x-1\right).\left(x^2+x+1\right)}=\frac{\left(x-1\right).\left(x-2\right)}{\left(x-1\right).\left(x^2+x+1\right)}\)
\(=\frac{x-2}{x^2+x+1}\)
\(a,\dfrac{x^3-3x^2-x+3}{x^2-3x}=\dfrac{x^2\left(x-3\right)-\left(x-3\right)}{x\left(x-3\right)}=\dfrac{\left(x-3\right)\left(x^2-1\right)}{x\left(x-3\right)}=\dfrac{x^2-1}{x}\)
\(b,\dfrac{x^3y+xy^3+xy}{x^3+y^3+x^2y+xy^2+x+y}\)
\(=\dfrac{xy\left(x^2+y^2+1\right)}{\left(x^3+xy^2+x\right)+\left(y^3+x^2y+y\right)}\)
\(=\dfrac{xy\left(x^2+y^2+1\right)}{x\left(x^2+y^2+1\right)+y\left(x^2+y^2+1\right)}\)
\(=\dfrac{xy\left(x^2+y^2+1\right)}{\left(x^2+y^2+1\right)\left(x+y\right)}\)
\(=\dfrac{xy}{x+y}\)
\(c,\dfrac{\left(3x+2\right)^2-\left(x+2\right)^2}{x^3-x^2}\)
\(=\dfrac{\left(3x+2-x-2\right)\left(3x+2+x+2\right)}{x\left(x^2-1\right)}\)
\(=\dfrac{2x.\left(4x+4\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{8\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{8}{x-1}\)
a: \(=24x^{2m-1+3-2m}y^{6-3m}-\dfrac{24}{7}y^{3n-7+6-3n}\cdot x^{3-2m}+8x^{3-2m+2m}\cdot y^{6-3n+3m}-24x^{3-2m}y^{6-2n+2}\)
\(=24x^2y^{6-3m}-\dfrac{24}{7}x^{3-2m}\cdot y^{-1}+8x^3y^{-3n+3m+6}-24x^{3-2m}y^{-2n+8}\)
b: \(=2x^{2n+1-2n}-6x^{2n+2-2n}+3x^{2n-1+1-2n}-9x^{2n-1+2-2n}\)
\(=2x-6x^2+3-9x\)
\(=-6x^2-7x+3\)
\(A=\frac{y^3-x^3}{x^3-3x^2y+3xy^2-y^3}\)
\(A=\frac{\left(y-x\right)\left(y^2+xy+x^2\right)}{\left(x-y\right)^3}\)
\(A=\frac{-\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x-y\right)^2}\)
\(A=\frac{-x^2-xy-y^2}{x^2-2xy+y^2}\)
\(a)\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{(x-3)^2(2x+5)}{(3x-1)(x-3)^2}(ĐK:x\ne3,x\ne\frac{1}{3})\)
\(=\frac{2x+5}{3x-1}\)
Còn bài b bạn tự làm nhé
Điều kiện: \(x\ne\left\{-1;-2;-5\right\}\)
\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x^2\left(x+1\right)-4\left(x+1\right)}{x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)}\)
\(=\frac{\left(x+1\right)\left(x^2-4\right)}{\left(x+1\right)\left(x^2+7x+10\right)}\)
\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]}\)
\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+5\right)}=\frac{x-2}{x+5}\)
Điều kiện: \(x\ne\left\{3;\frac{1}{3}\right\}\)
\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{2x^3-6x^2-x^2+3x-15x+45}{3x^3-9x^2-10x^2+30x+3x-9}\)
\(=\frac{2x^2\left(x-3\right)-x\left(x-3\right)-15\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)
\(=\frac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)
\(=\frac{2x^2-x-15}{3x^2-10x+3}=\frac{2x\left(x-3\right)+5\left(x-3\right)}{3x\left(x-3\right)-\left(x-3\right)}\)
\(=\frac{\left(2x+5\right)\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)}=\frac{2x+5}{3x-1}\)
b) Ta có: \(\dfrac{2^{4m}-2^{4n}}{2^{2n}+2^{2m}}\)
\(=\dfrac{4^{2m}-4^{2n}}{4^n+4^m}\)
\(=\dfrac{\left(4^m+4^n\right)\left(4^m-4^n\right)}{4^n+4^m}\)
\(=4^m-4^n\)