Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5\left(3x-2\right)}{3x\left(x+1\right)-2\left(x+1\right)}=\frac{5\left(3x-2\right)}{\left(x+1\right)\left(3x-2\right)}=\frac{5}{x+1}\)
bn hiu ve pt la dung roi va no rât qui để sau nay bn giải phuong trinh , con rut gọn la + - , : sao cho thu gọn đa thuc lai
vd 4x - 5 + x +9= 5x+ 4 vậy đó mk rút gọn xong
bn chu y nhieu đến pt vi nó quí lắm
\(\frac{x^2+y^2-1+2xy}{x^2-y^2+1+2x}\)
\(=\frac{\left(x+y\right)^2-1}{\left(x-1\right)^2-y^2}\)
\(=\frac{\left(x+y-1\right)\left(x+y+1\right)}{\left(x-1-y\right)\left(x-1+y\right)}\)
\(=\frac{x+y+1}{x-y-1}\)
Ta có: \(\frac{\left(x^2\right)^2-10x^2+9}{x^4+6x^3+9x^2+2x^3+12x^2+18x+x^2+6x+9}\)
= \(\frac{\left(x^2-1\right)\left(x^2-3\right)}{x^2\left(x^2+6x+9\right)+2x\left(x^2+6x+9\right)+\left(x^2+6x+9\right)}\)
= \(\frac{\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+3\right)}{\left(x^2+6x+9\right)\left(x^2+2x+1\right)}\)
= \(\frac{\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+3\right)}{\left(x+3\right)^2.\left(x+1\right)^2}\)
= \(\frac{\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+3\right)\left(x+1\right)\left(x+1\right)}\)
= \(\frac{\left(x-1\right)\left(x-3\right)}{\left(x+1\right)\left(x+3\right)}\)
\(A=x^{n-2}\left(x^2-1\right)-x\left(x^{n-1}-x^{n-3}\right)\)
\(\Rightarrow A=x^n-x^{n-2}-x^n+x^{n-2}\)
\(\Rightarrow A=0\)
Làm rồi đó nha
\(\frac{x^2+y^2-z^2+2xy}{x^2+z^2-y^2-2zx}\)
\(=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2-2xz+z^2\right)-y^2}\)
\(=\frac{\left(x+y\right)^2-z^2}{\left(x-z\right)^2-y^2}\)
\(=\frac{\left(x+y-z\right)\left(x+y+z\right)}{\left(x-z-y\right)\left(x-z+y\right)}\)
\(=\frac{x+y+z}{x-z-y}\)