Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AD phân tích đa thức thành nhân tử ở tử thức và mẫu thức của từng phân thức
a) \(P=\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ac}{\left(b-c\right)\left(b-a\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)
Đặt \(x=\frac{b}{c-a},y=\frac{c}{a-b},z=\frac{a}{b-c}\) , suy ra : \(P=-xy-yz-xz\)
Lại có : \(\left(x-1\right)\left(y-1\right)\left(z-1\right)=\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(\Rightarrow xy+yz+xz=-1\Rightarrow P=1\)
\(Q=\frac{\left[\left(x+\frac{1}{x}\right)^2\right]^3-\left(x^3+\frac{1}{x^3}\right)^2}{\left(x+\frac{1}{x}\right)^3+\left(x^3+\frac{1}{x^3}\right)}=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)\)
\(=3x+\frac{3}{x}=3\left(x+\frac{1}{x}\right)\)
Câu 3:
a: \(G=\dfrac{a^2}{b\left(a+b\right)}-\dfrac{b^2}{a\left(a-b\right)}+\dfrac{-\left(a^2+b^2\right)}{ab}\)
\(=\dfrac{a^3\left(a-b\right)-b^3\left(a+b\right)-\left(a^2+b^2\right)\left(a^2-b^2\right)}{ab\left(a-b\right)\left(a+b\right)}\)
\(=\dfrac{a^4-a^3b-ab^3-b^4-a^4+b^4}{ab\left(a-b\right)\left(a+b\right)}\)
\(=\dfrac{-ab\left(a^2+b^2\right)}{ab\left(a-b\right)\left(a+b\right)}=\dfrac{-a^2-b^2}{a^2-b^2}\)
b: \(\dfrac{a}{b}=\dfrac{a+1}{b+5}\)
nên ab+5a=ab+b
=>5a=b
\(G=\dfrac{-a^2-\left(5a\right)^2}{a^2-\left(5a\right)^2}=\dfrac{-a^2-25a^2}{a^2-25a^2}=\dfrac{-26}{-24}=\dfrac{13}{12}\)
Nhầm nha cácbạn sai đề ở câu c
\(\frac{\left(-x\right)^5.a^2}{x^2.\left(-a\right)^3}\)
Câu B tương tự nha :
\(\left(x-y+z\right)^2+\left(z-y\right)^2+\left(x-y+z\right)\left(2z-2y\right)\)
\(=\left(x-y+z\right)^2-2\left(z-y\right)\left(x-y+z\right)+\left(z-y\right)^2\)
\(=\left(x-y+z-z+y\right)^2\)
\(=x^2\)
câu b nha ( a + b )( a ^ 2 - ab + b ^ 2 ) -( a - b )( a ^ 2 + ab + b ^ 2 ) = (a^3 - a^2 * b + ab^2 + ba^2 - ab^2 + b^3) - (a^3 + a^2 * b + ab^2 - a^2 * b - ab^2 - b^3) = (a^3 + b^3 ) - (a^3 - b^3) = 2b^3
phân tích thành nhân tử ở mẫu và tử sau đó ta rút gọn vậy là ra đáp số
a) \(=\frac{5x\left(16x^2-25\right)}{\left(x-3\right)\left(4x-5\right)}\)\(\)
\(=\frac{5x\cdot\left(4x-5\right)\left(4x+5\right)}{\left(x-3\right)\left(4x-5\right)}\)
\(=\frac{5x\left(4x+5\right)}{x-3}\)
b) \(=\frac{3^2-\left(x+5\right)^2}{\left(x+2\right)^2}\)
\(=\frac{\left(3-x-5\right)\left(3+x+5\right)}{\left(x+2\right)^2}\)
\(=\frac{\left(x+2\right)\left(8+x\right)}{\left(x+2\right)^2}\)
\(=\frac{8+x}{x+2}\)
Đơn giản :))
\(\frac{x^2-\left(a+b\right)x+ab}{x^2-\left(a-b\right)x-ab}=\frac{x^2-ax-bx+ab}{x^2-ax+bx-ab}=\frac{\left(x^2-bx\right)-\left(ax-ab\right)}{\left(x^2+bx\right)-\left(ax+ab\right)}\)
\(=\frac{x\left(x-b\right)-a\left(x-b\right)}{x\left(x+b\right)-a\left(x+b\right)}=\frac{\left(x-a\right)\left(x-b\right)}{\left(x-a\right)\left(x+b\right)}=\frac{x-b}{x+b}\)
cảm
ơn
nhiều