\(\dfrac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2018

ĐK : \(a\ne b\ne c\)

\(\dfrac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

\(=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ca\right)-3ab\left(a+b+c\right)}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

\(=\dfrac{2\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}\)

\(=\dfrac{\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]}{2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}\)

\(=\dfrac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}\)

\(=\dfrac{a+b+c}{2}\)

3 tháng 8 2017

Dean thật, gõ gần xong rồi tự nhiên nó tạch, phải gõ lại -.-

Từ gt, ta suy ra:

\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right].\dfrac{1}{2}=0\)(Tự phân tích, không còn kiên nhẫn để gõ lại)

Mà a+b+c khác 0 => a=b=c

Thay vào thì C=8

27 tháng 6 2018

bai 2 :

dat cac tich ab , bc , ca lan luot la x,y,z ( khac 0 )

thay vao ta dc : x^3+y^3+z^3=3xyz

=> (x+y)(x^2-2xy+y^2)+z^3-3xyz=0

=>(x+y)(x^2+2xy+y^2)+z^3-3xy(x+y)-3xyz=0

=》(x+y+z)【(x+y)^2 -(x+y)z+z^2】-3xy(x+y+z)=0

=>(x+y+z)(x^2+y^2+z^2-xy-yz-xz)=0

=>\(\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]\)=0

=> x+y+z=0 hoac x=y=z

TH1 : a+b+c=0

=>P=-1

TH2 : a=b=c

=>P=8

15 tháng 11 2018

\(a^3+b^3+c^3=3abc\\ \left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\\ \left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\\ \left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Do \(a+b+c\ne0\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\\ \left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\\ \Rightarrow a=b=c\)

=>P=20093

ta có \(\sqrt{\left(1+a^3\right)\left(1+b^3\right)}=\sqrt{\left(1+a\right)\left(a^2-a+1\right)}.\sqrt{\left(1+b\right)\left(b^2-b+1\right)}\) Mà \(\sqrt{\left(a+1\right)\left(a^2-a+1\right)}\le\dfrac{a+1+a^2-a+2}{2}=\dfrac{a^2+2}{2}\) Tương tự thì \(\sqrt{\left(1+a^3\right)\left(1+b^3\right)}\le\dfrac{\left(a^2+2\right)\left(b^2+2\right)}{4}\Rightarrow\dfrac{a^2}{\sqrt{\left(1+a^3\right)\left(1+B^3\right)}}\ge\dfrac{4a^2}{\left(a^2+2\right)\left(b^2+2\right)}\) ...
Đọc tiếp

ta có \(\sqrt{\left(1+a^3\right)\left(1+b^3\right)}=\sqrt{\left(1+a\right)\left(a^2-a+1\right)}.\sqrt{\left(1+b\right)\left(b^2-b+1\right)}\)

\(\sqrt{\left(a+1\right)\left(a^2-a+1\right)}\le\dfrac{a+1+a^2-a+2}{2}=\dfrac{a^2+2}{2}\)

Tương tự thì \(\sqrt{\left(1+a^3\right)\left(1+b^3\right)}\le\dfrac{\left(a^2+2\right)\left(b^2+2\right)}{4}\Rightarrow\dfrac{a^2}{\sqrt{\left(1+a^3\right)\left(1+B^3\right)}}\ge\dfrac{4a^2}{\left(a^2+2\right)\left(b^2+2\right)}\)

=\(\dfrac{4a^2\left(c^2+2\right)}{\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)}\)

Tương tự rồi + vào, ta có

...\(\ge4\dfrac{a^2\left(c^2+2\right)+b^2\left(a^2+2\right)+c^2\left(b^2+2\right)}{\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)}\)

ta cần chứng minh \(3\left[a^2\left(c^2+2\right)+b^2\left(a^2+2\right)+c^2\left(b^2+2\right)\right]\ge\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\)

đến đây nhân tung ra và dùng cô-si tiếp

0
5 tháng 8 2017

từ giả thiết ,ta có:\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=4\)\(\Leftrightarrow a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)=4\)

\(\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=1\)---> thay 1= vào ...

5 tháng 8 2017

bn làm tiếp đi t chưa hiểu

Câu này em tui đăng chứ đâu biết đâu

2 tháng 10 2019

IQ vô cực thì tự làm đi

19 tháng 1 2020

ez mà :)))

19 tháng 1 2020

bạn ơi, hình như bạn nhớ nhầm rồi đấy, ko có HĐT đó đâu, mà có HĐT thức ấy nhưng a+b+c = 0  nữa cơ