Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,P=\left(\dfrac{2x-1}{x+3}-\dfrac{x}{3-x}-\dfrac{3-10x}{x^2-9}\right):\dfrac{x+2}{x-3}\left(x\ne\pm3;x\ne-2\right)\\ P=\dfrac{2x^2-7x+3+x^2+3x-3+10x}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x-3}{x+2}\\ P=\dfrac{3x^2+6x}{\left(x-3\right)\left(x+2\right)}=\dfrac{3x\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}=\dfrac{3x}{x-3}\\ b,x^2-7x+12=0\\ \Leftrightarrow\left(x-3\right)\left(x-4\right)=0\\ \Leftrightarrow x=4\left(x\ne3\right)\\ \Leftrightarrow A=\dfrac{3\cdot4}{4-3}=12\\ c,P=\dfrac{3\left(x-3\right)+9}{x-3}=3+\dfrac{9}{x-3}\in Z\\ \Leftrightarrow x-3\inƯ\left(9\right)=\left\{-9;-3;-1;1;3;9\right\}\\ \Leftrightarrow x\in\left\{-6;0;2;4;6;12\right\}\)
(x+2).(x2-2x+4)+(2x-3).(4x2+6x+9)
=(x3+8)+(8x3-27)
=x3+8+8x3-27
=+9x3-19
Câu 2 giống câu 1
mình chỉ phân tích thôi
a) 6x(4-x)+x-4
=6x(4-x)-(4-x)
=(6x-1)(4-x)
c) 25x^2-10x+1-16z^2
=(5x-1)^2-16z^2
=(5x-1-4z)(5x-1+4z)
ban xem lại đề bài câu b đi chắc là sai đó
còn các câu trên bạn tự làm nhé
Thực hiện phép tính:
a) (2x-3y)(4x2+6xy+9y2)
=8x3-27y3
b) (6x3+3x2+4x+2):(3x2+2)
=(3x2+2)(2x+1):(3x2+2)
=2x+1
c) (x+2)2+(3-x)-2(x+3)(x-3)
=x2+4x+4+3-x-2x2+18
=-x2+4x+25
A) \(\left(x-3\right)^2-\left(x+2\right)^2\)
\(=\left(x-3-x-2\right)\left(x-3+x+2\right)\)
\(=-5.\left(2x-1\right)\)
B) \(\left(4x^2+2xy+y^2\right)\left(2x-y\right)-\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
\(=\left(2x\right)^3-y^3-\left[\left(2x\right)^3+y^3\right]\)
\(=8x^3-y^3-8x^3-y^3\)
\(=-2y^3\)
C) \(x^2+6x+8\)
\(=x^2+6x+9-1\)
\(=\left(x+3\right)^2-1\)
\(=\left(x+3-1\right)\left(x+3+1\right)\)
\(=\left(x+2\right)\left(x+4\right)\)
bài 3 A) \(x^2-16=0\)
\(\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
vậy \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
B) \(x^4-2x^3+10x^2-20x=0\)
\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\left(x^3+10x\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^3+10x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\left(x^2+10\right)=0\\x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
vậy \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Bài 2:
a: 6x(4-x)+(x-4)
=6x(4-x)-(4-x)
=(4-x)(6x-1)
b: \(=x^2-1+y\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(1+y\right)=\left(y+1\right)\left(x+1\right)\left(x-1\right)\)
c: \(=\left(5x-1\right)^2-\left(4z\right)^2\)
=(5x-1-4z)(5x-1+4z)
a) \(\frac{x^2+2x+4}{4x^3-32}=\frac{x^2+2x+4}{4\left(x^3-8\right)}=\frac{x^2+2x+4}{4\left(x-2\right)\left(x^2+2x+4\right)}=\frac{1}{4\left(x-2\right)}.\)
b) \(\frac{10x-15}{4x^2-9}=\frac{5\left(2x-3\right)}{\left(2x\right)^2-3^2}=\frac{5\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}=\frac{5}{2x+3}.\)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
HAND!!!!
\(\frac{x^2+2x+4}{4x^3-32}=\frac{\left(x+2\right)^2}{4\left(x^3-8\right)}=\frac{\left(x+2\right)^2}{4\left(x-2\right)\left(x^2+2x+4\right)}=\frac{x+2}{4\left(x^2+2x+4\right)}.\)
\(\frac{10x-15}{4x^2-9}=\frac{5\left(2x-3\right)}{\left(2x\right)^2-3^2}=\frac{5\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}=\frac{5}{2x+3}\)