Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. gọi phần đầu đấy là A nhá, để đỡ cần viết lại
A=...............
= (3x+5)2 + ( 3x-5)2 - 9x2 -4
= (9x2 +30x + 25 ) + ( 9x2 -30x+ 25 ) - 9x2 -4
= 9x2 +30x + 25 + 9x2 -30x+25-9x2 -4
= 9x2 + 46
sai thì thôi nhé. bạn nên kiểm tra lại
d. (2x-1)*(4x2 + 2x +1 ) - 8x*( x2 +1) - 5
= 8x3 -1 - 8x3 -8x-5
= -8x-6
= -2(4x+3)
sai nhé. bạn nên kiểm tra lại
=a, (x-3)(x+3)-(x-7)(x+7)= x2 - 9 - x2 + 7
= -2
b, (4x-5)2+(3x-2)2-2(4x+5)(3x-2)= (4x-5)2 - 2(4x+5)(3x-2) + (3x-2)2
= ( 4x - 5 - 3x + 2 )2
= ( x - 3 )2
c, 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2= 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2
= (3x-y)2+ 2(3x-y)(3x+y)+ (3x+y)2
= ( 3x - y + 3x + y )2
= ( 6x )2
= 36x2
d, (x-y+z)2+(z-y)2+2(x-y+z+2(x-y+z)(y-z-y+z)(y-z)
1, rút gọn
a, (x-3)(x+3)-(x-7)(x+7)
= x^2 - 9 - (x^2 - 49)
= x^2 - 9 - x^2 + 49
= 40
b, (4x-5)2+(3x-2)2-2(4x+5)(3x-2)
= 16x^2 - 40x + 25 + 9x^2 - 12x + 4 - 2(12x^2 - 8x + 15x - 10)
= 25x^2 - 52x + 29 - 24x^2 + 16x - 30x + 20
= x^2 - 66x + 49
c, 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2
= 2(9x^2 - y^2) + 9x^2 - 6xy + y^2 + 9x^2 + 6xy + y^2
= 18x^2 - 2y^2 + 18x^2 + 2y^2
= 36x^2
d, (x-y+z)2+(z-y)2+2(x-y+z+2(x-y+z)(y-z-y+z)(y-z)
= dài vl
6,
=a4 [-(a-b)-(c-a)] + [b4(c-a)+c4(a-b)]
=rồi nhóm hạng tử chung lại
=và sau đó tách ra bằng hằng đẳng thức
kết quả =(a-b)(c-a)(c-b)(a2+b2+c2+ab+bc+ca)
Bài này khá dài nên mk nhác viết , bn cố gắng làm bài nhé !
2.
a) . -x3 + 3x2 - 3x + 1
=13-3.12x+3.1.x2-x3
=(1-x)3
b)8- 12x + 6x2 - x3
=23-3.22.x+3.2.x2-x3
=(2-x)3
3.
a) x3 + 12x2 + 48x + 64 tại x = 6
=x3+3.x2.4+3x4+432
=(x+4)3thay x=6 ta được :
(6+4)3=103=1000
b) x3 - 6x2 + 12x - 8 tại x= 22
=x3-3.x2.2+3.x.22 -23
=(x-2)3 thay x=22 ta đc:
=(22-2)3=203=8000
dấu <=> thứ 4 em làm nhầm rồi, 4x - 6x = - 2x chứ! Rồi tiếp theo em nên đưa về hằng đẳng thức chứ giải vậy ko đc đâu.
\(a,\dfrac{3x\left(1-x\right)}{1\left(x-1\right)}=\dfrac{-3x\left(x-1\right)}{x-1}=-3x\)
\(b,\dfrac{6x^2y^2}{8xy^3}=\dfrac{3x.2xy^2}{4y.2xy^2}=\dfrac{3x}{4y}\)
\(c,\dfrac{3\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}=\dfrac{x-z}{2}\)