K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2022

Câu 4: Không có nghĩa khi x-3=0

=>x=3

Câu 5:

\(A=\dfrac{x-3}{\left(x-3\right)\left(x+3\right)}=\dfrac{1}{x+3}\)

29 tháng 11 2021

1. = \(\dfrac{x+y}{x-y}\)
2. = \(\dfrac{x}{x+3}\)

16 tháng 2 2017

\(\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ac+2c+2}\)

\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{2c}{ac+2c+abc}\)

\(=\frac{a}{a\left(b+1+bc\right)}+\frac{b}{b+1+bc}+\frac{2c}{c\left(a+ab+2\right)}\)

\(=\frac{1}{b+bc+1}+\frac{b}{b+bc+1}+\frac{2}{a+2+ab}\)

\(=\frac{1}{b+bc+1}+\frac{b}{b+bc+1}+\frac{bc}{b+bc+1}\)

\(=\frac{b+bc+1}{b+bc+1}=1\)

16 tháng 2 2017

Theo bài ra , ta có :

\(M=\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ac+2c+2}\)

\(\Leftrightarrow\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{2bc}{b\left(ac+2c+2\right)}\)(Vì abc = 2 )

\(\Leftrightarrow\frac{a}{a\left(b+1+bc\right)}+\frac{b}{bc+b+1}+\frac{2bc}{abc+2bc+2b}\)

\(\Leftrightarrow\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{2bc}{2+2bc+2b}\)( Vì abc = 2 )

\(\Leftrightarrow\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{2bc}{2\left(1+bc+b\right)}\)

\(\Leftrightarrow\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}\)

\(\Leftrightarrow\frac{1+b+bc}{b+1+bc}=1\)

Vậy M=1

Chúc bạn học tốt =))ok

Phan Cả Phát xin hết !!!

25 tháng 11 2019

\(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\frac{\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\frac{\left(a+b+c\right)^3\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\frac{\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc-c^2\right)-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\frac{\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc-c^2-3ab\right)}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}\)

\(=a+b+c\)

28 tháng 12 2021

Câu 1: C

Câu 2: =x(x-2)*(x+2)

9 tháng 2 2021

ĐKXĐ : \(\hept{\begin{cases}ab-2\ne0\\ab+2\ne0\\a^4b^4\ne0\end{cases}}\Rightarrow ab\ne\pm2;a\ne0;b\ne0\)

\(P=\left(\frac{1}{ab-2}+\frac{1}{ab+2}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)

\(=\left(\frac{2ab}{a^2b^2-4}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)

\(=\left(\frac{4a^3b^3}{a^4b^4-16}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)

\(=\frac{8a^5b^5}{a^8b^8-16^2}.\frac{a^4b^4+16}{a^4b^4}=\frac{8a^5b^5\left(a^4b^4+16\right)}{\left(a^4b^4-16\right)\left(a^4b^4+16\right).a^4b^4}\)

\(=\frac{8ab}{a^4b^4-16}\)

b) Khi \(\frac{a^2+4}{b^2+9}=\frac{a^2}{9}\)

=> (a2 + 4).9 = a2(b2 + 9)

=> 9a2 + 36 = a2b2 + 9a2

=> a2b2 = 36

=> (ab)2 = 36

=> \(\orbr{\begin{cases}ab=6\left(tm\right)\\ab=-6\left(tm\right)\end{cases}}\)

Khi ab = 6 => P = \(\frac{8ab}{\left(ab\right)^4-16}=\frac{8.6}{6^4-16}=\frac{48}{1280}=\frac{3}{80}\)

Khi ab = -6 => P = \(\frac{8ab}{\left(ab\right)^4-16}=\frac{8.\left(-6\right)}{\left(-6\right)^4-16}=-\frac{3}{80}\)

17 tháng 8 2017

Đơn giản :))

\(\frac{x^2-\left(a+b\right)x+ab}{x^2-\left(a-b\right)x-ab}=\frac{x^2-ax-bx+ab}{x^2-ax+bx-ab}=\frac{\left(x^2-bx\right)-\left(ax-ab\right)}{\left(x^2+bx\right)-\left(ax+ab\right)}\)

\(=\frac{x\left(x-b\right)-a\left(x-b\right)}{x\left(x+b\right)-a\left(x+b\right)}=\frac{\left(x-a\right)\left(x-b\right)}{\left(x-a\right)\left(x+b\right)}=\frac{x-b}{x+b}\)

29 tháng 11 2016

1, b) \(\frac{x^2+y^2-4+2xy}{x^2-y^2+4+4x}\) = \(\frac{\left(x^2+2xy+y^2\right)-4}{\left(x^2+4x+4\right)-y^2}\) =\(\frac{\left(x+y\right)^2-2^2}{\left(x+2\right)^2-y^2}\)= \(\frac{\left(x+y+2\right)\left(x+y-2\right)}{\left(x+2+y\right)\left(x+2-y\right)}\) = \(\frac{x+y-2}{x+2-y}\)

2, A= \(\frac{a^2+ax+ab+bx}{a^2+ax-ab-bx}\) = \(\frac{\left(a^2+ax\right)+\left(ab+bx\right)}{\left(a^2+ax\right)-\left(ab+bx\right)}\) = \(\frac{a\left(a+x\right)+b\left(a+x\right)}{a\left(a+x\right)-b\left(a+x\right)}\)= \(\frac{\left(a+x\right)\left(a+b\right)}{\left(a+x\right)\left(a-b\right)}\)= \(\frac{a+b}{a-b}\)

30 tháng 11 2016

THANKS BN

19 tháng 1 2016

1/. PT <=> \(\frac{13-x}{x+3}+\frac{6\left(x^2+1\right)}{\left(x^4+x^2\right)-\left(9x^2+9\right)}-\frac{3\left(x+2\right)}{\left(x^2+2x\right)+\left(3x+6\right)}-\frac{2}{x-3}=0\)

<=> \(\frac{13-x}{x+3}+\frac{6\left(x^2+1\right)}{x^2\left(x^2+1\right)-9\left(x^2+1\right)}-\frac{3\left(x+2\right)}{x\left(x+2\right)+3\left(x+2\right)}-\frac{2}{x-3}=0\)

<=> \(\frac{13-x}{x+3}+\frac{6\left(x^2+1\right)}{\left(x^2+1\right)\left(x^2-9\right)}-\frac{3\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}-\frac{2}{x-3}=0\)

<=>\(\frac{\left(13-x\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{6}{\left(x-3\right)\left(x+3\right)}-\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=0\) (1)

ĐKXĐ: \(x\ne3vàx\ne-3\)

(1) => \(13x-39-x^2+3x+6-3x+9-2x-6=0\)

<=> \(x^2-11x+30=0\)

<=> (x2-5x) -(6x - 30) = 0

<=> x(x - 5) -6 (x - 5) = 0

<=> (x-5) (x - 6) = 0 

<=> x = 5 hay x = 6 (nhận )

Vậy pt đã cho có tập nghiệm S = {5;6}