Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ : \(\frac{2^3.3^4}{2^2.3^2.5}\)= \(\frac{2^3.3^4}{\left(2.3\right)^2.5}\)= \(\frac{2^3.3^4}{6^2.5}\)= \(\frac{2^3.3^4}{36.5}\)= \(\frac{8.81}{180}\)= \(\frac{648}{180}\)= 648 : 180 = 3,6 HOẶC \(\frac{648}{180}\)= \(\frac{18}{5}\)
\(a,\frac{121.75.130.169}{39.60.11.198}=\frac{11^2.5^2.3.13.2.5.13^2}{13.3.5.2^2.3.11.3^2.2.11}\)\(=\frac{11^2.5^3.3.13^3.2}{13.3^4.5.2^3.11^2}=\frac{5^2.13^2}{3^3.2^2}=\frac{4425}{108}\)
\(b,\frac{1989.1990+3978}{1992.1991-3984}=\frac{1989.1990+1989.2}{1992.1991-1992.2}\)\(=\frac{1989\left(1990+2\right)}{1992\left(1991-2\right)}=\frac{1989.1992}{1992.1989}=\frac{1}{1}=1\)
\(c.\frac{135.350+135.550}{900.100+35.900}=\frac{135\left(350+550\right)}{900\left(100+35\right)}=\)\(\frac{135.900}{900.135}=\frac{1}{1}=1\)
\(d.\frac{243.650-243.350}{600.200+600.43}=\frac{243\left(650-350\right)}{600\left(200+43\right)}\)\(=\frac{243.300}{600.243}=\frac{300}{600}=\frac{1}{2}\)
a)
\(y=\frac{2^3.3^4}{2^2.3^2.5}=\frac{2^2.2.3^2.3^2}{2^2.3^2.5}=\frac{2.3^2}{5}=\frac{18}{5}\)
b)\(y=\frac{1989.1990+3978}{1992.1991-3984}=\frac{1989.1990+1989.2}{1992.1991-1992.2}=\frac{1989.1992}{1992.1989}=1\)(vì tử bằng mẫu)
a, \(\frac{7.25-49}{7.24+21}\)
\(=\frac{7.25-7.7}{7.24+7.3}=\frac{7\left(25-7\right)}{7\left(24+3\right)}=\frac{18}{27}=\frac{2}{3}\)
b, \(\frac{2.\left(-13\right).9.10}{\left(-3\right).4.\left(-5\right).26}=\frac{2.\left(-13\right).\left(-3\right).\left(-3\right).\left(-5\right).\left(-2\right)}{\left(-3\right).2.2.\left(-5\right).\left(-13\right).\left(-2\right)}\)
\(=\frac{-3}{2}\)
DỄ LẮM !
a) \(\frac{7\cdot25-49}{7\cdot24+21}=\frac{7\cdot25-7\cdot7}{7\cdot24+7\cdot3}=\frac{7\left(25-7\right)}{7\left(24+3\right)}\)
=\(\frac{18}{27}=\frac{2}{3}\)
b) \(\frac{2\cdot\left(-13\right)\cdot9\cdot10}{\left(-3\right)\cdot4\cdot\left(-5\right)\cdot26}=\frac{-1\cdot2\cdot13\cdot3\cdot3\cdot5\cdot2}{1\cdot3\cdot2\cdot2\cdot5\cdot13\cdot2}=-\frac{3}{2}\)
Chúc bn học tốt !
\(\left(-\right)\frac{1989\cdot1990+3970}{1992\cdot1991+3984}=\frac{1989\cdot\left(1990+2\right)}{1992\cdot\left(1991+2\right)}=\frac{1989}{1993}\)
\(\left(-\right)\frac{3^{10}\cdot\left(-5\right)^{21}}{\left(-5\right)^{20}\cdot3^{12}}=\frac{3^{10}\cdot\left(-5\right)^{20}\cdot\left(-5\right)}{3^{10}\cdot\left(-5\right)^{20}\cdot3^2}=-\frac{5}{9}\)
\(\left(-\right)\frac{\left(-11\right)^5\cdot13^7}{11^5\cdot13^8}=\frac{11^5\cdot13^7\cdot\left(-1\right)}{11^5\cdot13^7\cdot13}=-\frac{1}{13}\)
\(\left(-\right)\frac{2^{10}\cdot3^{10}-2^{10}\cdot3^9}{2^9\cdot3^{10}}=\frac{2^{10}\cdot3^9\left(3-1\right)}{2^9\cdot3^{10}}=\frac{2^{11}\cdot3^9}{2^9\cdot3^{10}}=\frac{4}{3}\)
\(a.\frac{2\cdot\left(-13\right)\cdot9\cdot10}{\left(-3\right)\cdot4\cdot\left(-5\right)\cdot26}\)
\(=\frac{2\cdot\left(-13\right)\cdot3\cdot3\cdot2\cdot5}{\left(-3\right)\cdot2\cdot2\cdot\left(-5\right)\cdot13\cdot2}\)
\(=-\frac{3}{2}\)
b) \(\frac{2^3\cdot3^4}{2^2\cdot3^2\cdot5}=\frac{2\cdot3^2}{5}=\frac{2\cdot9}{5}=\frac{18}{5}\)
\(\frac{2^4\cdot5^2\cdot11^2\cdot7}{2^3\cdot5^3\cdot7^2\cdot11}=\frac{2\cdot1\cdot11\cdot1}{1\cdot5\cdot7\cdot1}=\frac{22}{35}\)
c) \(\frac{121\cdot75\cdot130\cdot169}{39\cdot60\cdot11\cdot198}=\frac{11\cdot11\cdot13\cdot10\cdot169}{13\cdot3\cdot6\cdot10\cdot11\cdot11\cdot6\cdot3}\)
\(=\frac{169}{3\cdot6\cdot6\cdot3}=\frac{169}{324}\)
d) \(\frac{1998\cdot1990+3978}{1992\cdot1991-3984}\)