\(\frac{5^{12}.3^9-5^{10}.3^{11}}{5^{10}.3^{10}}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2020

\(\frac{5^{12}.3^9-5^{10}.3^{11}}{5^{10}.3^{10}}\)\(=\frac{5^{10}.3^9(5^2-3^2)}{5^{10}.3^{10}}\)\(=\frac{5^2-3^2}{3}\)\(=\frac{16}{3}\)
Chúc bạn học tốt!

16 tháng 3 2020

\(\frac{7}{10}< \frac{6}{7}< \frac{48}{55}< \frac{12}{11}< \frac{8}{7}< \frac{7}{5}< \frac{3}{2}< \frac{9}{4}\)

30 tháng 4 2019

Bài làm

a ) \(A=\frac{9^{99}+1}{9^{100}+1}=\frac{9^{100}+1}{9^{100}+1}-\frac{9}{9^{100}+1}\)

           = \(1-\frac{9}{9^{100}+1}\)

\(B=\frac{10^{98}-1}{10^{99}-1}=\frac{10^{99}-1}{10^{99}-1}-\frac{10}{10^{99}-1}\)

      = \(1-\frac{10}{10^{99}-1}\)

Vì \(\frac{9}{9^{100}+1}>\frac{10}{10^{99}-1}\)

nên \(1-\frac{9}{9^{100}+1}< 1-\frac{10}{10^{99}-1}\)

\(\Rightarrow A< B\)

30 tháng 4 2019

Bài làm

b ) \(A=\frac{5^{10}}{1+5+5^2+.....+5^9}=\frac{1+5+5^2+.....+5^9}{1+5+5^2+.....+5^9}+\frac{1+5+5^2+.....+5^8-5^9.4}{1+5+5^2+.....+5^9}\)

          = \(1+\frac{1+5+5^2+.....+5^8+5^9.4}{1+5+5^2+.....+5^9}=1+5^9.3\)

\(B=\frac{6^{10}}{1+6+6^2+.....+6^9}=\frac{1+6+6^2+.....+6^9}{1+6+6^2+.....+6^9}+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}\)

     = \(1+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}=1+6^9.4\)

Vì \(1+5^9.3< 1+6^9.4\)

nên A < B

\(\frac{3^{10}.\left(-5\right)^{21}}{\left(-5\right)^{20}.3^{12}}=\frac{3^{10}.\left(-5\right)^{20}.\left(-5\right)}{\left(-5\right)^{20}.3^{10}.3^2}=\frac{-5}{3^2}=-\frac{5}{9}\)

31 tháng 8 2020

\(B=\frac{3^{10}.11+3^{10}.5}{3^9.2^4}=\frac{3^9.33+3^9.15}{3^9.2^4}\)

\(=\frac{3^9\left(33+15\right)}{3^9.2^4}=\frac{3^9.48}{3^9.16}\)

\(=\frac{48}{16}=3\)

31 tháng 8 2020

\(B=\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)

    \(=\frac{3^{10}.\left(11+5\right)}{3^9.8}\)

    \(=\frac{3^{10}.16}{3^9.8}\)

     \(=\frac{3.2}{1}\)

    \(=6\)