Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{3^4\left(5.79-1\right)}{2^2.3^2\left(5.79-1\right)}=\frac{9}{4}\); B = \(\frac{3.7.13.37\left(5.11-1\right)}{4.3.7.13.37\left(3.5-1\right)}=\frac{54}{4.14}=\frac{2.9}{4.2.7}=\frac{9}{28}\)
Bài 1: Rút gọn phân số:
A=\(\frac{11}{21.10^2+10^2}\)
B=\(\frac{3.5.7.11.13.37-10101}{1313130+20202}\)
\(A=\frac{11}{21.10^2+10^2}=\frac{11}{10^2.\left(21+1\right)}=\frac{11}{10^2.22}=\frac{11}{10^2.11.2}=\frac{1}{10^2.2}\)
\(B=\frac{3.5.7.11.13.37-10101}{1313130+20202}=\frac{\left(3.5.7.11.13.37\right).5-10101.1}{130.10101+10101.2}=\frac{10101.\left(5-1\right)}{10101.\left(130+2\right)}=\frac{4}{132}=\frac{1}{33}\)
Trả lời:
a, \(\frac{6\times9-2\times17}{63\times3-119}=\frac{2.3\times9-2\times17}{7.9\times3-7.17}\)
\(=\frac{2\times\left(3\times9-17\right)}{7\times\left(3\times9-17\right)}\)
\(=\frac{2}{7}\)
b, \(\frac{3\times13-13\times18}{15\times40-80}=\frac{13\times\left(3-18\right)}{40\times\left(15-2\right)}\)
\(=\frac{13\times-15}{40\times13}\)
\(=\frac{-3}{8}\)
c, \(\frac{-1997.1996+1}{\left(-1995\right).\left(-1997\right)+1996}=\frac{-1997.1996+1}{\left(1-1996\right).\left(-1997\right)+1996}\)
\(=\frac{-1997.1996+1}{-1997-1996.\left(-1997\right)+1996}\)
\(=\frac{-1997.1996+1}{-1996.\left(-1997\right)-1}\)
\(=\frac{-1997.1996+1}{-\left[1996.\left(-1997\right)+1\right]}\)
\(=-1\)
d, \(\frac{3.7.13.37.39-10101}{505050-70707}=\frac{10101.39-10101}{50.10101-7.10101}\)
\(=\frac{10101.\left(39-1\right)}{10101.\left(50-7\right)}\)
\(=\frac{10101.38}{10101.43}\)
\(=\frac{38}{43}\)
\(S=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)
=> 2S + 1/101 = \(2.\frac{50}{101}+\frac{1}{101}=\frac{100}{101}+\frac{1}{101}=\frac{101}{101}=1\)
A=3/4.7+3/7.10+...+3/73.76
A=1/4-1/7+1/7-1/10+1/10-1/13+....+1/73-1/76
A=1/4-1/76
A=9/38
b) B=5/10.11+5/11.12+....+5/99.100
B=5(1/10.11+1/11.12+1/12.13+...+1/99.100)
B=5(1/10-1/11+1/11-1/12+1/12-1/13+...+1/99-1/100)
B=5(1/10-1/100)
B=5.99/100
B=99/20
a) \(\frac{\left(-63\right)}{81}=\frac{\left(-63\right):9}{81:9}=\frac{-7}{9}\)
b) \(\frac{-25}{-75}=\frac{\left(-25\right):25}{\left(-75\right):25}=\frac{-1}{-3}=\frac{1}{3}\)
\(a.\frac{-63}{81}=\frac{-7}{9}\)
\(b.\frac{-25}{-75}=\frac{1}{3}\)
a/ \(-\frac{81}{504}=-\frac{9}{56};-\frac{10101}{101010}=\frac{-1}{10}\)
b/ \(\frac{72\cdot5+72\cdot3}{144\cdot2+144\cdot6}=\frac{72\left(5+3\right)}{144\left(2+6\right)}=\frac{8}{2\cdot8}=\frac{1}{2}\)
\(\frac{-81}{504}=-\frac{81:9}{504:9}=-\frac{9}{56}\)
\(\frac{-10101}{101010}=\frac{-10101:10101}{101010:10101}=\frac{-1}{10}\)
\(\frac{72.5+72.3}{144.2+144.6}=\frac{72.\left(5+3\right)}{144\left(2+6\right)}=\frac{72.8}{144.8}=\frac{72.8}{72.2.8}=\frac{1}{2}\)