\(P=\frac{bc-a^2+ac-b^2+ab-c^2}{a\left(bc-a^2\right)+b\left(ac-b^2\right)+c\left(ab-c^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2017

\(a^2+ac-b^2-bc=\left(a^2-b^2\right)+\left(ac-bc\right)=\left(a+b\right)\left(a-b\right)+c\left(a-b\right)=\)\(\left(a-b\right)\left(a+b+c\right)\)

Tương tự:

\(b^2+ab-c^2-ac=\left(b-c\right)\left(a+b+c\right)\)

\(c^2+bc-a^2-ab=\left(c-a\right)\left(a+b+c\right)\)

\(Q=\frac{1}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}+\frac{1}{\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}\)

\(=\frac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)

13 tháng 1 2017

cảm ơn b nha ^^

8 tháng 11 2019

Ta có

\(\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}=\frac{a^2+ab-bc-ab}{\left(a+b\right)\left(a+c\right)}=\frac{a\cdot\left(a+b\right)-b\cdot\left(c+a\right)}{\left(a+b\right)\left(c+a\right)}=\frac{a}{a+c}-\frac{b}{a+b}\left(1\right)\)

tương tự

\(\frac{b^2-bc}{\left(a+b\right)\left(b+c\right)}=\frac{b}{a+b}-\frac{c}{b+c}\left(2\right)\)

\(\frac{c^2-ab}{\left(c+a\right)\left(b+c\right)}=\frac{c}{c+b}-\frac{a}{a+b}\left(3\right)\)

Cộng (1);(2) và (3) ta có

\(\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\frac{b^2-ac}{\left(a+b\right)\left(b+c\right)}+\frac{c^2-ab}{\left(a+c\right)\left(c+b\right)}=\frac{a}{a+c}-\frac{b}{a+b}+\frac{b}{a+b}-\frac{c}{b+c}+\frac{c}{c+b}-\frac{a}{a+b}=0 \)

8 tháng 11 2019

thank bạn nha

20 tháng 11 2018

   

 \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)-b^2\left(a-b\right)-b^2\left(b-c\right)+c^2\left(a-b\right)\)

\(=\left(b-c\right)\left(a^2-b^2\right)-\left(a-b\right)\left(b^2-c^2\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(b-c\right)\left(b+c\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a+b-b-c\right)=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

       \(ab^2-ac^2-b^3+bc^2\)

\(=b^2\left(a-b\right)-c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(b^2-c^2\right)=\left(a-b\right)\left(b-c\right)\left(b+c\right)\)

Vậy \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)

\(=\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(b+c\right)}=\frac{a-c}{b+c}\)

20 tháng 11 2018

Có a2(b-c) + b2(c-a) + c2(a-b)

= a2(b-c) - b2(a-c) + c2(a-b)

= a2(b-c) - b2(b-c+a-b) + c2(a-b)

= a2(b-c) - b2(b-c) - b2(a-b) + c2(a-b)

=[a2(b-c) - b2(b-c)] - [b2(a-b) - c2(a-b)]

=(b-c)(a2-b2) - (a-b)(b2-c2)

=(b-c)(a-b)(a+b) - (a-b)(b-c)(b+c)

=(b-c)(a-b)[(a+b)-(b+c)]

=(b-c)(a-b)(a-c)

 Có ab2 - ac2 - b3 + bc2

   = (ab2-ac2) - (b3-bc2)

   =a(b2-c2) - b(b2-c2)

=(b2-c2)(a-b)

=(b-c)(b+c)(a-b)

Có  a2(b-c) + b2(c-a) + c2(a-b)   /   ab2 - ac2 - b3 + bc2

  = (b-c)(a-b)(a-c) / (b-c)(b+c)(a-b)

= (a-c) / (b+c)

11 tháng 4 2018

=\(a^3+b^3+c^3-3abc\)

8 tháng 7 2016

Ta có:

\(a^2+ac-b^2-bc=\left(a^2-b^2\right)+\left(ac-bc\right)\)

                                    \(=\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\)

                                    \(=\left(a-b\right)\left(a+b+c\right)\)(1)

\(b^2+ab-c^2-ac=\left(b^2-c^2\right)+\left(ab-ac\right)\)

                                    \(=\left(b-c\right)\left(b+c\right)+a\left(b-c\right)\)

                                    \(=\left(b-c\right)\left(a+b+c\right)\)(2)

\(c^2+bc-a^2-ab=\left(c^2-a^2\right)+\left(bc-ab\right)\)

                                    \(=\left(c-a\right)\left(a+c\right)+b\left(c-a\right)\)

                                    \(=\left(c-a\right)\left(a+b+c\right)\)(3)

Ta có : \(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}\)\(+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}\)\(+\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)(*)

Thế (1),(2),(3) vào (*)

=>\(\frac{1}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}+\frac{1}{\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}\)

\(\Leftrightarrow\frac{\left(c-a\right)+\left(a-b\right)+\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)

8 tháng 7 2016

Dễ thôi bạn chỉ cần quy đồng thôi

\(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\)\(\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)

=\(\frac{1}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}\)\(+\frac{1}{\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}\)

=\(\frac{c-a+a-b+b-c}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}=0\)

8 tháng 7 2016

Ta có :\(\left(a-b\right)\left(c^2+bc-a^2-ab\right)=\left(a-b\right)\left[\left(c^2-a^2\right)+\left(bc-ab\right)\right]\)

                                                          \(=\left(a-b\right)\left(c-a\right)\left(a+b+c\right)\)

Tương tự : \(\left(b-c\right)\left(a^2+ac-b^2-bc\right)=\left(b-c\right)\left(a-b\right)\left(a+b+c\right)\)

                    \(\left(c-a\right)\left(b^2+ab-c^2-ac\right)=\left(c-a\right)\left(b-c\right)\left(a+b+c\right)\)

\(MTC=\left(a-b\right)\left(b-c\right)\left(c-s\right)\left(a+b+c\right)\)

Kí hiệu biểu thức đã cho bởi \(Q\),ta có :

         \(Q=\frac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)