Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-tham khảo tại bài mà mình đã giải tại đây-
Câu hỏi của Trần Nam Hải - Toán lớp 9 - Học toán với OnlineMath
https://olm.vn/hoi-dap/detail/228029923283.html
- Chúc bạn học tốt -
_Minh ngụy_
\(A=\frac{1}{1-\sqrt{a}}+\frac{a\sqrt{a}}{\sqrt{a}-1}\left(\text{ĐKXĐ: a}\ne1\right)\)
\(A=\frac{-1}{-\left(1-\sqrt{a}\right)}+\frac{\left(\sqrt{a}\right)^2.\sqrt{a}}{\sqrt{a}-1}\)
\(A=\frac{-1}{\sqrt{a}-1}+\frac{\sqrt{a}^3}{\sqrt{a}-1}\)
\(A=\frac{-1+\sqrt{a}^3}{\sqrt{a}-1}\)
\(A=\frac{\sqrt{a}^3-1}{\sqrt{a}-1}\)
\(A=\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}-1}\)
\(A=a+\sqrt{a}+1\)
a. ĐK \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
b. \(Q=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{3\sqrt{x}}{\sqrt{x}-3}\)
c. Để \(Q< 1\Rightarrow Q-1< 0\Leftrightarrow\frac{3\sqrt{x}-\sqrt{x}+3}{\sqrt{x}-3}< 0\Leftrightarrow\frac{2\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\Rightarrow\sqrt{x}-3< 0\Rightarrow0\le x< 9\)
Vậy \(0\le x< 9\)thì \(Q< 1\)
Bài 1:
a) \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
b) \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)
\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)
c) ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)
\(=1-a+a=1\)
\(A=\frac{1}{1-\sqrt{a}}+\frac{a\sqrt{a}}{\sqrt{a}-1}\left(a\ge0,a\ne1\right)\)
\(A=\frac{-1}{\sqrt{a}-1}+\frac{a\sqrt{a}}{\sqrt{a}-1}\)
\(A=\frac{-1+a\sqrt{a}}{\sqrt{a}-1}=\frac{a\sqrt{a}-1}{\sqrt{a}-1}\)
\(A=\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}-1}\)
\(A=\frac{a+\sqrt{a}+1}{1}=a+\sqrt{a}+1\)
Vậy.............
-Chúc bạn học tốt >.<-
_Minh ngụy_