Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(M=\sqrt{6+2\sqrt{4-\sqrt{12}}}=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3}+1\)
\(N=\sqrt{6-2\sqrt{4+\sqrt{12}}}=\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)
\(=\sqrt{6-2\left(\sqrt{3}+1\right)}=\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3}-1\)
\(M.N=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=2\)
\(M-N=\sqrt{3}+1-\sqrt{3}+1=2\)
\(\Rightarrow M.N=M-N\)
\(\sqrt{6-4\sqrt{2}}\)\(+\sqrt{22-12\sqrt{2}}\)
\(=\sqrt{4-4\sqrt{2}+2}\)\(+\sqrt{18-12\sqrt{2}+4}\)
\(=\sqrt{\left(2-\sqrt{2}\right)^2}\)\(+\sqrt{\left(2-3\sqrt{2}\right)^2}\)
\(=2-\sqrt{2}+3\sqrt{2}-2\)
\(=\left(2-2\right)+\left(-\sqrt{2}+3\sqrt{2}\right)\)
\(=0+2\sqrt{2}\)\(=2\sqrt{2}\)
\(\sqrt{17-12\sqrt{2}}\)\(+\sqrt{9+4\sqrt{2}}\)
\(=\sqrt{\left(3-2\sqrt{2}\right)^2}\)\(+\sqrt{\left(2\sqrt{2}+1\right)^2}\)
\(=\left|3-2\sqrt{2}\right|\)\(+\left|2\sqrt{2}+1\right|\)
\(=3-2\sqrt{2}\)\(+2\sqrt{2}+1\)
\(=\left(3+1\right)+\left(-2\sqrt{2}+2\sqrt{2}\right)\)
\(=4+0=4\)
b) \(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
\(=\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}+\dfrac{\sqrt{8-2\sqrt{15}}}{\sqrt{2}}-\sqrt{2}.\sqrt{6-2\sqrt{5}}\)
\(=\dfrac{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}}{\sqrt{2}}+\dfrac{\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{2}}-\sqrt{2}.\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}+\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}-\sqrt{2}.\left(\sqrt{5}-1\right)\)
\(=\dfrac{\left(\sqrt{5}+\sqrt{3}\right)+\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{2}}-\sqrt{10}+\sqrt{2}\)
\(=\dfrac{\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}}{\sqrt{2}}-\sqrt{10}+\sqrt{2}=\dfrac{2\sqrt{5}}{\sqrt{2}}-\sqrt{10}+\sqrt{2}\)
\(=\sqrt{10}-\sqrt{10}+\sqrt{2}=\sqrt{2}\)
e) \(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) \(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(C=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)
\(C=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(C=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)
câu a ; f chưa nghỉ ra
\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=|2+\sqrt{3}|-|2-\sqrt{3}|\)
\(=2+\sqrt{3}-2+\sqrt{3}\)
\(=2\sqrt{3}\)
\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=|3+\sqrt{2}|-|3-\sqrt{2}|\)
\(=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)
\(=|3+2\sqrt{2}|+|3-2\sqrt{2}|\)
\(=3+2\sqrt{2}+3-2\sqrt{2}\)
\(=6\)
\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=|2+\sqrt{5}|-|2-\sqrt{5}|\)
\(=2+\sqrt{5}-\sqrt{5}+2\)
\(=4\)
\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}\)
\(=|1+\sqrt{5}|-|1-\sqrt{5}|\)
\(=1+\sqrt{5}-\sqrt{5}+1\)
\(=2\)
\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(A=\sqrt{3}+2+2-\sqrt{3}\)
A = 2 + 2
A = 4
\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(B=\sqrt{2}+3+3-\sqrt{2}\)
B = 3 + 3
B = 6
\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(C=3+2\sqrt{2}+3-2\sqrt{2}\)
C = 3 + 3
C = 6
\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(D=\sqrt{5}+2-\sqrt{5}+2\)
D = 2 + 2
D = 4
\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(E=\sqrt{5}+1-\sqrt{5}+1\)
E = 1 + 1
E = 2
1. \(\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}\)
\(=\sqrt{11+2\sqrt{11}+1}-\sqrt{11-2\sqrt{11}+1}\)
\(=\sqrt{\left(\sqrt{11}+1\right)^2}-\sqrt{\left(\sqrt{11}-1\right)^2}\)
\(=\sqrt{11}+1-\sqrt{11}+1=2\)
2.a)\(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
\(=\sqrt{5-2.\sqrt{5}.2+2^2}-\sqrt{5}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)
\(=\sqrt{5}-2-\sqrt{5}=-2\)
b)\(\sqrt{3-2\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)
\(=\sqrt{2-2\sqrt{2}+1}-\sqrt{2+2\sqrt{2}+1}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(\sqrt{2}+1\right)^2}\)
\(=\sqrt{2}-1-\sqrt{2}-1=-2\)
c)\(\sqrt{11-6\sqrt{2}}+3+\sqrt{2}\)
\(=\sqrt{9-2\sqrt{2}.3+2}+3+\sqrt{2}\)
\(=\sqrt{\left(3-\sqrt{2}\right)^2}+3+\sqrt{2}\)
\(=3-\sqrt{2}+3+\sqrt{2}=6\)
d)\(\sqrt{7-2\sqrt{6}}+\sqrt{7+2\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{6}-1\right)^2}+\sqrt{\left(\sqrt{6}+1\right)^2}\)
\(=\sqrt{6}-1+\sqrt{6}+1=2\sqrt{6}\)
1. tách 12 = 1+ 11 ở cả 2 căn thức là ra hằng đẳng thức (a+b)^2 và (a-b)^2 đó bạn.
2.
a. tách 9 = 4 + 5 ra hằng đẳng thức ( 3 - \(\sqrt{5}\) )2
b. tách 3 = 1 + 2 ra hằng đẳng thức ( 1 - \(\sqrt{2}\))2 và ( 1+ \(\sqrt{2}\) )2
c. tách 11 = 9 + 2, tương tự có hđt.
d. tách 7 = 1+ 6
M + N = \(\sqrt{6+2\sqrt{4-\sqrt{12}}}+\sqrt{6-2\sqrt{4+\sqrt{12}}}\)
= \(\sqrt{6+2\sqrt{4-2\sqrt{3}}}+\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)
= \(\sqrt{6+2\left(\sqrt{3}-1\right)}+\sqrt{6-2\left(\sqrt{3}+1\right)}\)
= \(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}=\sqrt{3}+1+\sqrt{3}-1=2\sqrt{3}\left(1\right)\)
MN = \(\sqrt{6+2\sqrt{4-\sqrt{12}}}\sqrt{6-2\sqrt{4+\sqrt{12}}}=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}.\sqrt{6-2\left(\sqrt{3}+1\right)}=\sqrt{4+2\sqrt{3}}.\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{16-12}=\sqrt{4}=2\left(2\right)\)
Từ (1) và (2) => ???