Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\left(2-\sqrt{5}\right)-\left(\sqrt{5}-1\right)\)
\(=2-\sqrt{5}-\sqrt{5}+1\)
\(=3-2\sqrt{5}\)
\(\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}=|2-\sqrt{5}|-|\sqrt{5}-1|.\)
\(=\sqrt{5}-2-\sqrt{5}+1\)(Vì \(2=\sqrt{4}< \sqrt{5};1=\sqrt{1}< \sqrt{5}\))
\(=-1\)
\(\sqrt{5+2\sqrt{6}}+\sqrt{10-4\sqrt{6}}=\sqrt{2+2.\sqrt{2}\sqrt{3}+3}+\sqrt{4-2.2.\sqrt{6}+6}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{6}\right)^2}\)
\(=|\sqrt{2}+\sqrt{3}|+|2-\sqrt{6}|\)
\(=\sqrt{2}+\sqrt{3}+\sqrt{6}-2\)( Vì \(\sqrt{6}>\sqrt{4}=2\))
mik làm bài này
linh tinh
bn ơi
cho mik
xin 1 L-I-K-E
b,
d,
\(\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)
\(=\frac{2}{\sqrt{5}-2}-\frac{2}{2+\sqrt{5}}\)
\(=\frac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{5-4}\)
\(=2\sqrt{5}+4-2\sqrt{5}+4\)
\(=8\)
\(=\sqrt{\left(\sqrt{3}+2\right)^2}-\sqrt{\left(2\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+2-2\sqrt{3}+1\)
\(=3-\sqrt{3}\)
\(B\sqrt{2}=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}-2\)\(=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}-2\)\(=\left|\sqrt{5}+1\right|-\left|\sqrt{5}-1\right|-2=\sqrt{5}+1-\sqrt{5}+1-2=0\Rightarrow B=0\)
\(C=\left(1+\frac{\sin^2a}{\cos^2a}\right)\left(1-\sin^2a\right)+\left(1+\frac{\cos^2a}{\sin^2a}\right)\left(1-\cos^2a\right)\)
\(=\left(1+\frac{\sin^2a}{\cos^2a}\right)\left(\cos^2a\right)+\left(1+\frac{\cos^2a}{\sin^2a}\right)\left(\sin^2a\right)\)
\(=\frac{\sin^2a+\cos^2a}{\cos^2a}.\cos^2a+\frac{\cos^2a+\sin^2a}{\sin^2a}.\sin^2a\)
\(=\frac{1}{\cos^2a}.\cos^2a+\frac{1}{\sin^2a}\sin^2a=2\)
B
Bạn dùng theo công thức này
\(\sqrt{m+n\sqrt{p}};\sqrt{m-n\sqrt{p}}\)
Dùng pt bậc 2
\(a=1;b=-m;c=\frac{\left(n\sqrt{p}\right)^2}{4}\)
Nghiệm x1 ; x2
\(\sqrt{\left(\sqrt{x1}+\sqrt{x2}\right)^2};\sqrt{\left(\sqrt{x1}-\sqrt{x2}\right)^2}\)
\(B=\sqrt{\left(\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}\right)^2}-\sqrt{2}\)
\(=|\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}|-|\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}|-\sqrt{2}\)
\(=\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}-\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}\right)-\sqrt{2}\)
\(=2\cdot\sqrt{\frac{1}{2}}-\sqrt{2}\)
\(=\sqrt{2}-\sqrt{2}=0\)
C.
\(=\frac{1}{cos^2a}\cdot cos^2a+\frac{1}{sin^2a}\cdot sin^2a\)
\(=1+1=2\)
1) \(\sqrt{\left(1-\sqrt{2}\right)^2}\)\(+\sqrt{\left(\sqrt{2}+3\right)^2}\)
\(=1-\sqrt{2}+\sqrt{2}+3\)
\(=4\)
2) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}-2+\sqrt{3}-1\)
\(=2\sqrt{3}-3\)
\(2\sqrt{\left(-5\right)^6}+3\sqrt{\left(-2\right)^8}\)
\(=2.5^3+3.2^4\)
\(=2.125+3.16\)
\(=298\)
thôi không cần nữa các bạn ạ ! mình giải đc r đáp án là cosh(0) +1 nhé!