\(K=\frac{1^2}{2^2-1}.\frac{3^2}{4^2-1}.\frac{5^2}{6^2-1}...\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2016

a ) \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}=\frac{1}{4}\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)

\(< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\right)=\frac{1}{4}\left(1+\frac{1}{1}-\frac{1}{n}\right)< \frac{1}{2}\)

b )

\(B=\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{3^2-1}+\frac{1}{5^2-1}+...+\frac{1}{\left(2n+1\right)^2-1}\)

\(=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2n\left(2n+2\right)}\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-...+\frac{1}{2n}-\frac{1}{2n+2}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2n+2}\right)< \frac{1}{4}\).

25 tháng 8 2020

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{49}{50}\)

\(\Rightarrow1-\frac{1}{n+1}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{n+1}=\frac{1}{50}\)

\(\Rightarrow n+1=50\)

\(\Rightarrow n=49\)

\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)

\(\Rightarrow\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n-1}-\frac{1}{2n+1}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2n+1}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{2n+1}=\frac{1}{51}\)

\(\Rightarrow2n+1=51\)

\(\Rightarrow2n=50\)

\(\Rightarrow n=25\)

28 tháng 12 2016

\(A=\frac{1}{\left(2n\right)^2}< \frac{1}{2}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)=B\)

2B=1-1/(2n+1)

B=1/2-1/{2.(2n+1)Ư

KL A<1/2

8 tháng 1 2017

Câu hỏi hay đó nhưng mình ko biết cách làm

2 tháng 12 2017

a) Ta có :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\)

\(\Rightarrow\)A < 1 

b) \(B=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)

\(B=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^3}+...+\frac{1}{n^2}\right)\)

vì \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}< 2-\frac{1}{n}< 2\)

\(\Rightarrow B< \frac{1}{2^2}.2=\frac{1}{2}\)

2 tháng 12 2017

cảm ơn nha!

22 tháng 10 2019

1.

a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)

b) x=0

d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)

e) \(x=\frac{2}{3}\)