\(B\)bằng 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2019

\(B=\frac{\left[\frac{2}{3}\right]^3\cdot\left[-\frac{3}{4}\right]^2\cdot\left[-1\right]^5}{\left[\frac{2}{5}\right]^2\cdot\left[-\frac{5}{12}\right]^3}\)

\(=\frac{\frac{2^3}{3^3}\cdot\frac{\left[-3\right]^2}{4^2}\cdot\left[-1\right]}{\frac{2^2}{5^2}\cdot\frac{\left[-5\right]^3}{12^3}}\)

\(=\frac{\frac{8}{27}\cdot\frac{9}{16}\cdot\left[-1\right]}{\frac{4}{25}\cdot\frac{-125}{\left[2^2\cdot3\right]^3}}\)

\(=\frac{\frac{1}{3}\cdot\frac{1}{2}\cdot\left[-1\right]}{\frac{4}{25}\cdot\frac{-125}{\left[2^2\right]^3\cdot3^3}}\)

\(=\frac{\frac{1\cdot1\cdot\left[-1\right]}{3\cdot2\cdot1}}{\frac{4}{25}\cdot\frac{-125}{4^3\cdot3^3}}\)

\(=\frac{\frac{-1}{6}}{\frac{4}{25}\cdot\frac{-125}{64\cdot27}}=\frac{\frac{-1}{6}}{\frac{4}{1}\cdot\frac{-5}{64\cdot27}}\)

\(=\frac{\frac{-1}{6}}{4\cdot\frac{-5}{64\cdot27}}=\frac{\frac{-1}{6}}{-\frac{20}{64\cdot27}}=\frac{72}{5}\)

11 tháng 9 2019

Bài làm

a) \(\left(\frac{2}{3}\right)^3.\left(-\frac{3}{4}\right)^2.\left(-1\right)^5\)

\(=\frac{8}{27}.\frac{9}{16}.\left(-1\right)\)

\(=-\frac{1}{6}\)

b) \(\left(\frac{2}{5}\right)^2.\left(-\frac{5}{12}\right)^3\)

\(=\frac{4}{25}.\left(-\frac{125}{1728}\right)\)

\(=-\frac{5}{432}\)

# Học tốt # 

Mọi người ơi!!

Cái này là rút gọn theo cách hợp lý

Cái biểu thức đằng trên phần biểu thức đằng dưới nha!!! @#@

Bài 1 : Thực hiện phép tính(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)Bài 2 : Tìm x biết(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot...
Đọc tiếp

Bài 1 : Thực hiện phép tính

(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)

(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

Bài 2 : Tìm x biết

(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)

(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)

(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)

(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)

Bài 3 : 

(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)

CMR : \(\frac{A}{B}\)Là 1 số nguyên

(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)

Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.

VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4

(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)

(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7

0
15 tháng 6 2019

a/ \(\left(\frac{-2}{3}\right)^4:24=\frac{16}{81}:24=\frac{2}{243}\)

b/ \(\left(\frac{3}{4}\right)^3.4^4=\frac{27}{64}.256=108\)

c/ \(\frac{3.0,8^5}{2,4^4}=\frac{3.0,32768}{33,1776}=\frac{0,98304}{33,1776}=\frac{4}{135}\)

d/ \(\frac{3^3-0,9^5}{2,7^4}=\frac{27-0,59049}{53,1441}=\frac{26,40951}{53,1441}=0,4969415231\)

e/\(\left(\frac{-7}{2}\right)^2+\left(\frac{-3}{4}\right)^3.64-\left(\frac{-61}{5}\right)\)

\(=\frac{49}{4}+\frac{-27}{64}.64+\frac{61}{5}\)

\(=12,25-27+12,2\)

\(=-2,55\)

f/ \(\frac{2^4.2^6}{\left(2^5\right)^2}-\frac{2^5.15^3}{6^3.10^2}=\frac{2^{10}}{2^{10}}-\frac{2^5.5^3.3^3}{2^3.3^3.5^2.2^2}\)

                                      \(=1-\frac{2^5.5^3.3^3}{2^5.3^3.5^2}=1-\frac{5}{1}=-4\)

                                       \(\)

chúc bạn học tốt

Bài 1

\(a,\left(\frac{3}{5}\right)^2-\left[\frac{1}{3}:3-\sqrt{16}.\left(\frac{1}{2}\right)^2\right]-\left(10.12-2014\right)^0\)

\(=\frac{9}{25}-\left[\frac{1}{9}-4.\frac{1}{4}\right]-1\)

\(=\frac{9}{25}-\left(-\frac{8}{9}\right)-1\)

\(=\frac{9}{25}+\frac{8}{9}-1\)

\(=\frac{56}{225}\)

\(b,|-\frac{100}{123}|:\left(\frac{3}{4}+\frac{7}{12}\right)+\frac{23}{123}:\left(\frac{9}{5}-\frac{7}{15}\right)\)

\(=\frac{100}{123}:\left(\frac{4}{3}\right)+\frac{23}{123}:\frac{4}{3}\)

\(=\left(\frac{100}{123}+\frac{23}{123}\right):\frac{4}{3}\)

\(=1:\frac{4}{3}=\frac{3}{4}\)

Phần c đăng riêng vì mk chưa tìm đc cách giải bt mỗi đáp án :v 

\(c,\frac{\left(-5\right)^{32}.20^{43}}{\left(-8\right)^{29}.125^{25}}\)

\(=\frac{\left(-5\right)^{32}.\left(4.5\right)^{43}}{\left[4.\left(-2\right)\right]^{29}.\left(-5^3\right)^{25}}\)

\(=\frac{-5^{32}.4^{43}.5^{43}}{4^{29}.\left(-2\right)^{29}.\left(5\right)^{75}}\)

\(=\frac{\left(-5^4\right)^8.4^{43}.5^{43}}{4^{29}.\left(-2\right)^{29}.\left(5^3\right)^{25}}\)

\(=-\frac{1}{2}\)

9 tháng 9 2019

Gửi tạm trước 2 câu !

\(a,\text{ }3^2\cdot\frac{1}{243}\cdot81^2\cdot3^{-3}=3^2\cdot\frac{1}{3^5}\cdot\left(3^4\right)^2\cdot\frac{1}{3^3}=3^2\cdot\frac{1}{3^5}\cdot3^8\cdot\frac{1}{3^3}=3^2=9\)\(b,\text{ }\frac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\frac{3^{10}\cdot\left(3\cdot5\right)^5}{\left(5^2\right)^3\cdot\left(-3\cdot3\right)^7}=\frac{3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3^{15}\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3}{-5}\)

9 tháng 9 2019

Trả lời :

\(a,\text{ }3^2\cdot\frac{1}{243}\cdot81^2\cdot3^{-3}=3^2\cdot\frac{1}{3^5}\cdot\left(3^4\right)^2\cdot\frac{1}{3^3}=3^2\cdot\frac{1}{3^5}\cdot3^8\cdot\frac{1}{3^3}=3^2=9\)\(b,\text{ }\frac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\frac{3^{10}\cdot\left(3\cdot5\right)^5}{\left(5^2\right)^3\cdot\left(-3\cdot3\right)^7}=\frac{3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3^{15}\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3}{-5}\)

27 tháng 6 2019

Những câu từ D trở đi là các câu riêng biệt ak bạn

2 tháng 7 2019

\(A = {1\over2}-{3\over4}+{5\over6}-{7\over12}={6\over12}-{9\over12}+{10\over12}-{7\over12}\)\(={0\over12}=0\)

20 tháng 7 2019

Bài 2 

| x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= | ( -3,2) + \(\frac{2}{5}\)|

=> | x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= | -2,8|

=> | x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= -2,8

=> | x - \(\frac{1}{3}\)| = -2,8 - \(\frac{4}{5}\)

=> | x - \(\frac{1}{3}\)| = - 3,6

=> x - \(\frac{1}{3}\)= -3,6

=> x = -3,6 + \(\frac{1}{3}\)

=> x = \(\frac{-49}{15}\)

21 tháng 7 2019

Bài 3 :

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}\)

\(=\frac{\left[a_1+a_2+...+a_9\right]-\left[1+2+...+9\right]}{9+8+...+1}=\frac{90-45}{45}=1\)

Ta có : \(\frac{a_1-1}{9}=1\Rightarrow a_1=10\)

Tương tự : \(a_1=a_2=....=a_9=10\)