\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{3}\)

b)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

trả lời nhanh giúp mk nha........

2 tháng 8 2018

a) \(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{3}\)

\(=\sqrt{6+2\sqrt{6}+2\sqrt{3}+2\sqrt{2}}-\sqrt{3}\)

\(=\sqrt{\left(\sqrt{3}+\sqrt{2}+1\right)^2}-\sqrt{3}\)

\(=\sqrt{3}+\sqrt{2}+1-\sqrt{3}\)

\(=\sqrt{2}+1\)

b)  \(\sqrt{10+\sqrt{60}-\sqrt{24}-\sqrt{40}}\)

\(=\sqrt{10+2\sqrt{15}-2\sqrt{6}-2\sqrt{10}}\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\sqrt{5}+\sqrt{3}-\sqrt{2}\)

29 tháng 8 2019

a/ \(\sqrt{2}+\sqrt{6}\)

b/ Sửa đề:

\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}=1\)

c/ \(1+\sqrt{2}+\sqrt{5}\)

29 tháng 8 2019

giải rõ ra hộ mình với

29 tháng 8 2019

giải ra chưa chỉ mình với

5 tháng 9 2015

Bạn áp dụng hằng đẳng thức (a+b+c)^2= a^2+b^2+c^2+2(ab+ac+bc)

29 tháng 1 2022

a) Có \(\sqrt{2}< \sqrt{2,25}=1,5\)

\(\sqrt{6}< \sqrt{6,25}=2,5\)

\(\sqrt{12}< \sqrt{12,25}=3,5\)

\(\sqrt{20}< \sqrt{20,25}=4,5\)

=> \(P=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 1,5+2,5+3,5+4,5=12\)

Vậy P < 12

30 tháng 1 2022

Answer:

ý a, tham khảo bài làm của @xyzquynhdi

\(\sqrt{2}+\sqrt{3}+\sqrt{5}\)

\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)

\(=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)

\(=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2+2\sqrt{2}\sqrt{3}+2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)

a: \(P=\dfrac{\left[\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}-4+2\left(\sqrt{x}+1\right)\right]}{x+4\sqrt{x}+4}\)

\(=\dfrac{x+\sqrt{x}-2\sqrt{x}-4+2\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2}\)

\(=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}+2\right)^2}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

c: Để |P|>P thì P<0

\(\Leftrightarrow\sqrt{x}-1< 0\)

hay 0<x<1

AH
Akai Haruma
Giáo viên
3 tháng 8 2019

Lời giải:
\(A=\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)

\(=\sqrt{10+2\sqrt{2}(\sqrt{3}+\sqrt{5})+2\sqrt{15}}=\sqrt{2+(3+5+2\sqrt{15})+2\sqrt{2}(\sqrt{3}+\sqrt{5})}\)

\(=\sqrt{2+(\sqrt{3}+\sqrt{5})^2+2\sqrt{2}(\sqrt{3}+\sqrt{5})}\)

\(=\sqrt{(\sqrt{2}+\sqrt{3}+\sqrt{5})^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)

\(2B=2.\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=2.\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})+(\sqrt{4}+\sqrt{6}+\sqrt{8})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=2.\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})+\sqrt{2}(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=2(1+\sqrt{2})\)

Do đó:

\(A-2B=\sqrt{3}+\sqrt{5}-(2+\sqrt{2})>\sqrt{2}+\sqrt{4}-(2+\sqrt{2})=0\)

\(\Rightarrow A>2B\)

4 tháng 8 2019

sao kq 2B ra nt a

18 tháng 8 2017

khó wa

28 tháng 6 2018

\(P=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(P=1+\sqrt{2}\)

bởi vì tách \(4=\sqrt{4}+\sqrt{4}\)

các bài khác tương tự