Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^3}{\left(a-b\right)\left(a-c\right)}+\frac{b^3}{\left(b-c\right)\left(b-a\right)}+\frac{c^3}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{a^3\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{b^3\left(c-a\right)}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}+\frac{c^3\left(a-b\right)}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)
\(=\frac{a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a+b+c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=a+b+c\)
Sửa đề cho nó đẹp
\(\frac{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}\)
\(=\frac{3\left(a-b\right)\left(a-c\right)\left(c-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=-3\)
a) \(P=\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ac}{\left(b-c\right)\left(b-a\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)
Đặt \(x=\frac{b}{c-a},y=\frac{c}{a-b},z=\frac{a}{b-c}\) , suy ra : \(P=-xy-yz-xz\)
Lại có : \(\left(x-1\right)\left(y-1\right)\left(z-1\right)=\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(\Rightarrow xy+yz+xz=-1\Rightarrow P=1\)
\(Q=\frac{\left[\left(x+\frac{1}{x}\right)^2\right]^3-\left(x^3+\frac{1}{x^3}\right)^2}{\left(x+\frac{1}{x}\right)^3+\left(x^3+\frac{1}{x^3}\right)}=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)\)
\(=3x+\frac{3}{x}=3\left(x+\frac{1}{x}\right)\)
Phân tích mẫu thức thành nhân tử :
\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2c-ab^2+ac^2-bc^2\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)\)
\(=\left(b-c\right)\left(a^2+bc-ab-ac\right)\)
\(=\left(b-c\right)\left[a\left(a-b\right)-c\left(a-b\right)\right]=\left(b-c\right)\left(a-c\right)\left(a-b\right).\)
Do đó : \(A=\frac{\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3}{-\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Nhận xét : Nếu \(x+y+z=0\) thì \(x^3+y^3+z^3=3xyz.\)
Đặt \(b-c=x,c-a=y,a-b=z\) thì \(x+y+z=0\)
Theo nhận xét trên : \(A=\frac{x^3+y^3+z^3}{-xyz}=\frac{3xyz}{-xyz}=-3.\)
Tử:
(b - c)3 + (c - a)3 + (a - b)3
= (b - c + c - a + a - b)3 - 3(b - c + c - a)(b - c + a - b)(c - a + a - b)
= 0 - 3(b - a)(a - c)(c - b)
= 3(a - b)(a - c)(c - b)
Mẫu:
a2(b - c) + b2(c - a) + c2(a - b)
= a2(b - c) + b2c - ab2 + ac2 - bc2
= a2(b - c) - a(b2 - c2) + bc(b - c)
= a2(b - c) - a(b - c)(b + c) + bc(b - c)
= (b - c)(a2 - ab - ac + bc)
= (b - c)[a(a - b) - c(a - b)]
= (b - c)(a - b)(a - c)
\(A=\frac{3\left(a-b\right)\left(a-c\right)\left(c-b\right)}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}\)
\(=\frac{3\left(c-b\right)}{b-c}\)
Phân tích mẫu \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2c-ab^2+c^2a-c^2b\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b+c\right)\left(b-c\right)\)
\(=\left(b-c\right)\left(a^2+bc-ab-ac\right)=\left(b-c\right)\left[a\left(a-c\right)-b\left(a-c\right)\right]\)
\(=\left(b-c\right)\left(a-b\right)\left(a-c\right)=-\left(b-c\right)\left(a-b\right)\left(c-a\right)\)
Đặt b - c = x, c - a = y, a - b = z
=> x + y + z = b - c + c - a + a - b = 0
Từ x+y+z=0 => x3+y3+z3=3xyz (tự c/m)
=>\(A=\frac{x^3+y^3+z^3}{-xyz}=\frac{3xyz}{-xyz}=-3\)
Ta có
\(B=\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}+\frac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(c-a\right)}+\frac{\left(x-c\right)\left(x-a\right)}{\left(a-c\right)\left(b-a\right)}+\frac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(c-a\right)}-\frac{\left(x-c\right)\left(x-a\right)}{\left(a-c\right)\left(a-b\right)}+\frac{\left(x-a\right)\left(x-b\right)}{\left(a-c\right)\left(c-b\right)}\)
\(=\frac{\left(x-b\right)\left(x-c\right)-\left(x-c\right)\left(x-a\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-c\right)\left(x-a\right)-\left(x-b\right)\left(x-a\right)}{\left(b-c\right)\left(c-a\right)}\)
\(=\frac{\left(x-c\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-a\right)\left(b-c\right)}{\left(a-b\right)\left(a-c\right)}\).
\(=\frac{x-c}{a-c}-\frac{x-a}{a-c}=\frac{x-c-x+a}{a-c}\)
\(=1\)
\(=\frac{-bc\left(b-c\right)}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}+\frac{-ca\left(c-a\right)}{\left(b-c\right)\left(a-b\right)\left(c-a\right)}+\frac{-ab\left(a-b\right)}{\left(c-a\right)\left(b-c\right)\left(a-b\right)}\)
\(=\frac{-b^2c+bc^2-c^2a+ca^2-a^2b+ab^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{b^2\left(a-c\right)+ca\left(a-c\right)-b\left(a-c\right)\left(a+c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{\left(a-c\right)\left(b^2+ca-ba-bc\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{\left(a-c\right)\left[b\left(b-a\right)-c\left(b-a\right)\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{\left(a-c\right)\left(b-c\right)\left(b-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(c-a\right)\left(b-c\right)\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)
\(=\frac{a^3\left(b-c\right)-b^3\left(a-c\right)+c^3\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=\frac{a^3b-ab^3-a^3c+b^3c+c^3\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{ab\left(a^2-b^2\right)-c\left(a^3-b^3\right)+c^3\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=\frac{ab\left(a+b\right)-c\left(a^2+b^2+ab\right)+c^3}{\left(a-c\right)\left(b-c\right)}\)
\(=\frac{a^2b+ab^2-a^2c-b^2c-abc+c^3}{\left(a-c\right)\left(b-c\right)}=\frac{a^2\left(b-c\right)+ab\left(b-c\right)-c\left(b^2-c^2\right)}{\left(a-c\right)\left(b-c\right)}\)
\(=\frac{a^2+ab-c\left(b+c\right)}{a-c}=\frac{a^2+ab-bc-c^2}{a-c}=\frac{b\left(a-c\right)+\left(a^2-c^2\right)}{a-c}=a+b+c\)