Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(x-\dfrac{1}{2}\right)^2\cdot\left(x+\dfrac{1}{2}\right)^2\)
\(=\left(x^2-\dfrac{1}{4}\right)^2\)
\(=x^4-\dfrac{1}{2}x^2+\dfrac{1}{16}\)
\(A = \left( {\dfrac{3}{{2x + 4}} + \dfrac{x}{{2 - x}} - \dfrac{{2{x^2} + 3}}{{{x^2} - 4}}} \right):\dfrac{{2x - 1}}{{4x - 8}}\\ A = \left[ {\dfrac{3}{{2\left( {x + 2} \right)}} - \dfrac{x}{{x - 2}} - \dfrac{{2{x^2} + 3}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}} \right].\dfrac{{4x - 8}}{{2x - 1}}\\ A = \dfrac{{3\left( {x - 2} \right) - 2x\left( {x + 2} \right) - 2\left( {2{x^2} + 3} \right)}}{{2\left( {x - 2} \right)\left( {x + 2} \right)}}.\dfrac{{4\left( {x - 2} \right)}}{{2x - 1}}\\ A = \dfrac{{3x - 6 - 2{x^2} - 4x - 4{x^2} - 6}}{{x + 2}}.\dfrac{2}{{2x - 1}}\\ A = \dfrac{{ - x - 12 - 6{x^2}}}{{x + 2}}.\dfrac{2}{{2x - 1}}\\ A = \dfrac{{ - 2x - 24 - 12{x^2}}}{{2{x^2} - x + 4x - 2}}\\ A = \dfrac{{ - 12{x^2} - 2x - 24}}{{2{x^2} + 3x - 2}}\\ \)
\(\frac{5}{a}+\frac{3}{a+4}=\frac{5.\left(a+4\right)+3a}{a.\left(a+4\right)}=\frac{5a+20+3a}{a^2+4a}\)
\(=\frac{8a+20}{a^2+4a}\)
\(\frac{4}{c-5}+\frac{2}{2c+3}\) \(=\frac{4\left(2c+3\right)+2\left(c-5\right)}{\left(c-5\right)\left(2c+3\right)}\)
\(=\frac{8c+12+2c-10}{2c^2+3c-10c-15}\)
\(=\frac{10c-2}{2c^2-7c-15}\)
câu còn lại tương tự nha
mk phải đi học rồi
\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)
\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)
\(=2\)
Gợi ý:
Đặt:
\(\frac{1}{117}=a\)
\(\frac{1}{119}=b\)
Đến đây bạn thế a, b vào A rồi thu gọn, sau đó tính
Lời giải:
\(Q=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})+\sqrt{2}(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{(1+\sqrt{2})(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)
\(\frac{2+x}{2-x}\div\frac{4x^2}{4-4x+x^2}\times\left(\frac{2}{2-x}-\frac{8}{8+x^3}\times\frac{4-2x+x^2}{2-x}\right)\)
\(=\frac{2+x}{2-x}\times\frac{4-4x+x^2}{4x^2}\times\left(\frac{2}{2-x}-\frac{8}{\left(2+x\right)\left(4-2x+x^2\right)}\times\frac{4-2x+x^2}{2-x}\right)\)
\(=\frac{2+x}{2-x}\times\frac{\left(2-x\right)^2}{4x^2}\times\left(\frac{2\left(2+x\right)}{\left(2+x\right)\left(2+x\right)}-\frac{8}{\left(2+x\right)\left(2-x\right)}\right)\)
\(=\frac{\left(2+x\right)\left(2-x\right)}{4x^2}\times\frac{4+2x-8}{\left(2+x\right)\left(2-x\right)}\)
\(=\frac{2\left(2+x-4\right)}{4x^2}\)
\(=\frac{x-2}{2x^2}\)
a) \(\frac{36\left(x-2\right)}{32-16x}=\frac{36\left(x-2\right)}{16\left(2-x\right)}=-\frac{36\left(2-x\right)}{16\left(2-x\right)}=-\frac{36}{16}=-\frac{9}{4}\)
b) \(\frac{3x^2-12x+12}{x^4-8x}=\frac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}=\frac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}=\frac{3x-6}{x^3+2x^2+4x}\)
c) \(\frac{7x^2+14x+7}{3x^2+3x}=\frac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}=\frac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\frac{7\left(x+1\right)}{3x}=\frac{7x+7}{3x}\)
d) \(\frac{x^4-5x^2+4}{x^4-10x^2+9}=\frac{x^4-x^2-4x^2+4}{x^4-x^2-9x^2+9}=\frac{x^2\left(x^2-1\right)-4\left(x^2-1\right)}{x^2\left(x^2-1\right)-9\left(x^2-1\right)}=\frac{\left(x^2-4\right)\left(x^2-1\right)}{\left(x^2-9\right)\left(x^2-1\right)}=\frac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}\)
e) \(\cdot\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}=\frac{\left(x^3+1\right)\left(x+1\right)}{x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}=\frac{x^2+2x+1}{x^2+1}\)
\(\frac{45.6^{13}-4^7.9^8}{2.4^6.27^5}=\frac{5.3^2.2^{13}.3^{13}-2^{14}.3^{16}}{2.2^{12}.3^{15}}=\frac{5.3^{15}.2^{13}-2^{14}.3^{16}}{2^{13}.3^{15}}=\frac{2^{13}.3^{15}.\left(5-2.3\right)}{2^{13}.3^{15}}=5-6=-1\)