Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A^2=2+2.\frac{\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}}{2}\)
\(2+\sqrt{64-15}=2+\sqrt{49}=2+7=9\) mà A>0
=> A=3
2) \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\)
\(A=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)
\(A=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)
\(A^2=\left(4+\sqrt{15}\right)\left(16-4\sqrt{15}\right)\)
\(=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\)
Mà A >0
=> A=2
Mà 4>3
=> \(\sqrt{4}=2>\sqrt{3}\)
=> \(A>\sqrt{3}\)
a) Ta có: \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)
\(=\left(-\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)
\(=-2+2\sqrt{5}-\sqrt{5}\)
\(=-2+\sqrt{5}\)
b) \(\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}\sqrt{2}+\frac{4}{5}\sqrt{200}\right)\div\frac{1}{8}\)
\(=\left(\frac{\sqrt{2}}{4}-\frac{3\sqrt{2}}{2}+8\sqrt{2}\right)\cdot8\)
\(=\frac{27\sqrt{2}}{4}\cdot8\)
\(=54\sqrt{2}\)
\(\frac{\sqrt{8-\sqrt{15}}}{\sqrt{30}-\sqrt{2}}=\frac{1}{2}\) NHA Nguyễn Thị My Na !
B1
a,\(\frac{5}{3\sqrt{8}}\)\(=\frac{5.\sqrt{8}}{3\sqrt{8}.\sqrt{8}}=\frac{5.\sqrt{8}}{3}\)
b,\(\frac{2a}{1-\sqrt{a}}=\frac{2a\left(1+\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}=\frac{2a\left(1+\sqrt{a}\right)}{1-a}\)
c,\(\frac{2+\sqrt{2}}{1+\sqrt{2}}=\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{1+\sqrt{2}}=\sqrt{2}\)
d,\(\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\frac{\sqrt{5}\left(\sqrt{3-1}\right)}{1-\sqrt{3}}=\sqrt{-5}\)
\(a,A=\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}\)
\(=\sqrt{\left(\sqrt{5}^2+2\sqrt{5}+2\sqrt{2}\cdot\sqrt{5}\right)+\sqrt{2}^2+2\sqrt{2}\cdot1+1^2}\)
\(=\sqrt{\sqrt{5}^2+2\cdot\sqrt{5}\left(\sqrt{2}+1\right)+\left(\sqrt{2}+1\right)^2}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{2}+1\right)^2}\)
\(=\sqrt{5}+\sqrt{2}+1\)
\(b,B=\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
\(=\left(\frac{3\cdot\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}{\sqrt{6}+1}+\frac{2\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}{\sqrt{6}-2}-\frac{4\left(3-\sqrt{6}\right)\left(3+\sqrt{6}\right)}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
\(=\left[3\cdot\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-4\left(3+\sqrt{6}\right)\right]\left(\sqrt{6}+11\right)\)
\(=\left(\sqrt{6}+11\right)\left(\sqrt{6}-11\right)=-115\)
\(\frac{\sqrt{8-\sqrt{15}}}{\sqrt{30}-\sqrt{2}}=\frac{\sqrt{2}\sqrt{8-\sqrt{15}}}{\sqrt{2}\left(\sqrt{15}.\sqrt{2}-\sqrt{2}\right)}=\frac{\sqrt{16-2\sqrt{15}}}{\sqrt{2}.\sqrt{2}\left(\sqrt{15}-1\right)}\)
\(=\frac{\sqrt{15-2\sqrt{15}+1}}{2\left(\sqrt{15}-1\right)}=\frac{\sqrt{\left(\sqrt{15}-1\right)^2}}{2\left(\sqrt{15}-1\right)}=\frac{\sqrt{15}-1}{2\left(\sqrt{15}-1\right)}=\frac{1}{2}\)
\(A=\left(\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\right)\left(15+2\sqrt{6}\right)\)
\(A=\left(\frac{5+2\sqrt{6}}{\left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right)}+\frac{5-2\sqrt{6}}{\left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right)}\right)\left(15+2\sqrt{6}\right)\)
\(A=\left(\frac{5+2\sqrt{6}+5-2\sqrt{6}}{\left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right)}\right)\left(15+2\sqrt{6}\right)\)
\(A=\left(\frac{10}{\left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right)}\right)\left(15+2\sqrt{6}\right)\)
\(A=\left(\frac{10}{25-24}\right)\left(15+2\sqrt{6}\right)\)
\(A=10\left(15+2\sqrt{6}\right)\)
\(A=150+20\sqrt{6}\)
\(\frac{\sqrt{5-2\sqrt{6}}+\sqrt{8-2\sqrt{15}}}{\sqrt{7}+2\sqrt{10}}\)
\(=\frac{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{7}+2\sqrt{10}}\)(tách ra hằng đẳng thức)
\(=\frac{\sqrt{3}-\sqrt{2}+\sqrt{5}-\sqrt{3}}{\sqrt{7}+2\sqrt{10}}\)
\(=\frac{\sqrt{5}-\sqrt{2}}{\sqrt{7}+2\sqrt{10}}\)
p/s: tách đến đây là em bí rồi ạ :(
ko sao a~, ra là tớ chép đề bài sai, haizzz
\(D=\sqrt{\frac{8+\sqrt{15}}{2}}+\sqrt{\frac{8-\sqrt{15}}{2}}\)
\(\Rightarrow D^2=\frac{8+\sqrt{15}}{2}+\frac{8-\sqrt{15}}{2}+2.\sqrt{\frac{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}{2.2}}\)
\(=8+2.\sqrt{\frac{64-15}{4}}\)
\(=8+2.\frac{7}{2}=8+7=15\)
\(\Rightarrow D=\sqrt{15}\text{ Hoặc }D=-\sqrt{15}\)
\(\text{Mà }D>0\text{ nên }D=\sqrt{15}\)
D=√8+√152 +√8−√152
⇒D2=8+√152 +8−√152 +2.√(8+√15)(8−√15)2.2
=8+2.√64−154
=8+2.72 =8+7=15
⇒D=√15 Hoặc D=−√15
Mà D>0 nên D=√15