Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\sqrt{16-6\sqrt{7}}+\sqrt{7}\)
\(=\sqrt{3^2-2.3.\sqrt{7}+7}+\sqrt{7}\)
\(=\sqrt{\left(3-\sqrt{7}\right)^2}+\sqrt{7}\)
\(=\left|3-\sqrt{7}\right|+\sqrt{7}\)
\(=3-\sqrt{7}+\sqrt{7}\)
\(=3\)
b) Ta có: \(\sqrt{\left|12\sqrt{5}-29\right|}+\sqrt{12\sqrt{5}+29}\)
\(=\sqrt{\left(\sqrt{29-12\sqrt{5}}+\sqrt{12\sqrt{5}+29}\right)^2}\)
\(=\sqrt{29-12\sqrt{5}+2\sqrt{\left(29-12\sqrt{5}\right)\left(12\sqrt{5}+29\right)}+12\sqrt{5}+29}\)
\(=\sqrt{58+2\sqrt{121}}\)
\(=\sqrt{58+2.11}\)
\(=\sqrt{80}=4\sqrt{5}\)
a) Ta có: \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)
\(=\left(-\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)
\(=-2+2\sqrt{5}-\sqrt{5}\)
\(=-2+\sqrt{5}\)
b) \(\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}\sqrt{2}+\frac{4}{5}\sqrt{200}\right)\div\frac{1}{8}\)
\(=\left(\frac{\sqrt{2}}{4}-\frac{3\sqrt{2}}{2}+8\sqrt{2}\right)\cdot8\)
\(=\frac{27\sqrt{2}}{4}\cdot8\)
\(=54\sqrt{2}\)
b) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) = \(1+\sqrt{2}\)
a) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\) = \(\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}\) = \(\dfrac{\sqrt{2}}{2}\)
\(B=\sqrt{5}-\sqrt{3-\sqrt{\left(2.\sqrt{5}\right)^2-2.3.2\sqrt{5}+3^2}}\)\(=\sqrt{5}-\sqrt{3-2\sqrt{5}+3}=\sqrt{5}-\sqrt{5-2\sqrt{5}+1}\)\(=\sqrt{5}-\sqrt{5}+1=1\)
a/ \(\sqrt{21+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
= \(\sqrt{16+2.4.\sqrt{5}+5}+\sqrt{5-2.2\sqrt{5}+4}\)
= \(\sqrt{\left(4+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
= \(4+\sqrt{5}+\sqrt{5}-2=2+2\sqrt{5}\)
b/ \(\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}=\dfrac{\sqrt{10}+\sqrt{15}}{2\left(\sqrt{2}+\sqrt{3}\right)}\) = \(\dfrac{\left(\sqrt{10}+\sqrt{15}\right)\left(\sqrt{2}-\sqrt{3}\right)}{2\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}\)
= \(\dfrac{\sqrt{20}-\sqrt{30}+\sqrt{30}-\sqrt{45}}{2\left(2-3\right)}\) = \(\dfrac{\sqrt{20}-\sqrt{45}}{-2}\) = \(\dfrac{2\sqrt{5}-3\sqrt{5}}{-2}\)
= \(\dfrac{-\sqrt{5}}{-2}=\dfrac{\sqrt{5}}{2}\)
1) \(\sqrt{12}\)+\(5\sqrt{3}-\sqrt{48}\)
= \(2\sqrt{3}+5\sqrt{3}-4\sqrt{3}\)
= (2+5-4).\(\sqrt{3}\)
= \(3\sqrt{3}\)
2)\(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
= \(5\sqrt{5}+2\sqrt{5}-3.3\sqrt{5}\)
= \(5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
= \(\left(5+2-9\right).\sqrt{5}\)
= -2\(\sqrt{2}\)
3)\(3\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)
= \(3.4\sqrt{2}+4.2\sqrt{2}-5.3\sqrt{2}
\)
= 12\(\sqrt{2}\) \(+8\sqrt{2}\) \(-15\sqrt{2}\)
= \(\left(12+8-15\right).\sqrt{2}\)
= \(5\sqrt{2}\)
4)\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)
= \(3.2\sqrt{3}-4.3\sqrt{3}+5.4\sqrt{3}\)
= \(6\sqrt{3}-12\sqrt{3}+20\sqrt{3}\)
= \(\left(6-12+20\right).\sqrt{3}\)
= \(14\sqrt{3}\)
5)\(\sqrt{12}+\sqrt{75}-\sqrt{27}\)
= \(2\sqrt{3}+5\sqrt{3}-3\sqrt{3}\)
= \(\left(2+5-3\right).\sqrt{3}\)
= \(4\sqrt{3}\)
6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)
= \(2.3\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= 6\(\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= \(\left(6-7+9\right).\sqrt{2}\)
= 8\(\sqrt{2}\)
7)\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
= \(3.2\sqrt{5}-2.3\sqrt{5}+4\sqrt{5}\)
= \(6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)
= \(4\sqrt{5}\)
8)\(\left(\sqrt{2}+2\right).\sqrt{2}-2\sqrt{2}\)
= \(\left(\sqrt{2}\right)^2+2\sqrt{2}-2\sqrt{2}\)
= 2