\(\frac{^3\sqrt{a^4}+^3\sqrt{a^2b^2}+^3\sqrt{b^4}}{^3\sqrt{a^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

a/ \(\sqrt{8\left(\sqrt{2}-\sqrt{3}\right)^2}=2\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)=2\sqrt{6}-4\)

b/ \(ab\sqrt{1+\frac{1}{a^2b^2}}=ab.\sqrt{\frac{a^2b^2+1}{a^2b^2}}=\sqrt{a^2b^2.\frac{a^2b^2+1}{a^2b^2}}=\sqrt{a^2b^2+1}\)

c/ \(\sqrt{\frac{a}{b^3}+\frac{a}{b^4}}=\sqrt{\frac{a}{b^3}\left(1+\frac{1}{b}\right)}=\frac{1}{b}.\sqrt{\frac{a}{b}\left(1+\frac{1}{b}\right)}\)

d/ \(\frac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}=\frac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\sqrt{a}\)

b: \(A=\dfrac{1}{\sqrt[3]{4-\sqrt{15}}}+\sqrt[3]{4-\sqrt{15}}\)

\(=\sqrt[3]{4+\sqrt{15}}+\sqrt[3]{4-\sqrt{15}}\)

\(\Leftrightarrow A^3=4+\sqrt{15}+4-\sqrt{15}+3\cdot A\cdot1\)

\(\Leftrightarrow A^3-3A-8=0\)

hay \(A\simeq2.49\)

a: \(B=\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\)

\(\Leftrightarrow B^3=5-\sqrt{17}+5+\sqrt{17}+3\cdot B\cdot2=10+6B\)

\(\Leftrightarrow B^3-6B-10=0\)

hay \(B\simeq3.05\)

31 tháng 3 2017

a) ĐS: .

b) ĐS: Nếu ab> 0 thì

Nếu ab

c) ĐS:

d)

Nhận xét. Nhận thấy rằng để sqrt{a} có nghĩa thì ageq 0. Do đó . Vì thế có thể phân tích tử thành nhân tử.


31 tháng 3 2017

a) ĐS: .

b) ĐS: Nếu ab> 0 thì

Nếu ab

c) ĐS:

d)

Nhận xét. Nhận thấy rằng để sqrt{a} có nghĩa thì ageq 0. Do đó . Vì thế có thể phân tích tử thành nhân tử.

26 tháng 7 2018

Giup mình phần 3,4,5 của bài 2 với bài 4 nữa . Helpppp me !!