\(\dfrac{\left(x-y\right)^3-3xy.\left(x+y\right)+y^3}{x-6y}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

c) hang dang thuc ( x -y+z)^2

o duoi phan h hang dang thuc luon

a) phan h nhan tu ra sao cho co tử la (x-1)(3x^2 -4x +1)

mau la (x-1)(2x^2 -x-3)

 b ) k nhin dc de

22 tháng 10 2021

\(\frac{\left(x-y\right)^3+3xy.\left(x+y\right)+y^3}{x-6y}\)

\(=\frac{x^3-3x^2y+3xy^2-y^3+3x^2y+3xy^2+y^3}{x-6y}\)

\(=\frac{x^3+\left(-3x^2y+3x^2y\right)+\left(3xy^2+3xy^2\right)+\left(-y^3+y^3\right)}{x-6y}\)

\(=\frac{x^3+6xy^2}{x-6y}\)

6 tháng 11 2018

a) \(\dfrac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}\)

= \(\dfrac{3x^3-3x^2-4x^2+4x+x-1}{2x^3-2x^2+x^2-x-3x+3}\)

= \(\dfrac{3x^2\left(x-1\right)-4x\left(x-1\right)+\left(x-1\right)}{2x^2\left(x-1\right)+x\left(x-1\right)-3\left(x-1\right)}\)

=\(\dfrac{\left(x-1\right)\left(3x^2-4x+1\right)}{\left(x-1\right)\left(2x^2-x-3\right)}\)

= \(\dfrac{3x^2-3x-x+1}{2x^2+2x-3x-3}\)

= \(\dfrac{3x\left(x-1\right)-\left(x-1\right)}{2x\left(x+1\right)-3\left(x+1\right)}\)

= \(\dfrac{\left(x-1\right)\left(3x-1\right)}{\left(x+1\right)\left(2x-3\right)}\)

Mình không chắc là đúng hoàn toàn nha!

6 tháng 11 2018

b) \(\dfrac{\left(x-y\right)^3-3xy\left(x+y\right)+y^3}{x-6y}\)

= \(\dfrac{x^3-3x^2y+3xy^2-y^3-3x^2y-3xy^2+y^3}{x-6y}\)

= \(\dfrac{x^3-6x^2y}{x-6y}\)

= \(\dfrac{x^2\left(x-6y\right)}{x-6y}\)

= \(x^2\)

20 tháng 11 2017

1/

\(\dfrac{\left(x-y\right)^3-3xy\left(x+y\right)+y^3}{x-6y}\)

\(=\dfrac{x^3-3x^2y+3xy^2-y^3-3x^2y-3xy^2+y^3}{x-6y}\)

\(=\dfrac{x^3-6x^2y}{x-6y}\)

\(=\dfrac{x^2\left(x-6y\right)}{x-6y}\)

\(=x^2\)

\(2\)/

\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)

\(=\dfrac{\left(x-y+z^{ }\right)^2}{\left(x-y\right)^2-z^2}\)

\(=\dfrac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}\)

\(=\dfrac{x-y+z}{x-y-z}\)

3/

\(\dfrac{\left(n+1\right)!}{n!\left(n+2\right)}\)

\(=\dfrac{n!\left(n+1\right)}{n!\left(n+2\right)}\)

\(=\dfrac{n+1}{n+2}\)

4/

\(\dfrac{n!}{\left(n+1\right)!-n!}\)

\(=\dfrac{n!}{n!\left(n+1\right)-n!}\)

\(=\dfrac{n!}{n!\left[\left(n+1\right)-1\right]}\)

\(=\dfrac{n!}{n!.n}\)

\(=\dfrac{1}{n}\)

5/

\(\dfrac{\left(n+1\right)!-\left(n+2\right)!}{\left(n+1\right)!+\left(n+2\right)!}\)

\(=\dfrac{\left(n+1\right)!-\left(n+1\right)!\left(n+2\right)}{\left(n+1\right)!+\left(n+1\right)!\left(n+2\right)}\)

\(=\dfrac{\left(n+1\right)!\left(-n-1\right)}{\left(n+1\right)!\left(n+3\right)}\)

\(=\dfrac{-n-1}{n+3}\)

20 tháng 11 2017

Hỏi đáp ToánHỏi đáp Toán

21 tháng 4 2017

Giải bài 13 trang 40 Toán 8 Tập 1 | Giải bài tập Toán 8

26 tháng 5 2017

Q=\(\left(x-y\right)^3+x^3+3x^2y+3xy^2-\left(x-y\right)^3-3x^2y-3xy^2\)

Q=\(x^3+y^3\)

26 tháng 5 2017

P=\(\left(5x-1-5x-4\right)^2\)

P=25

21 tháng 7 2017

b) Ta có nhận xét này nếu a+b+c=0 thì\(a^3+b^3+c^3=3abc\) (nếu cần chứng minh thì hỏi sau nhé)

Khi đó: tử=(x-y)(y-z)(z-x)

Mẫu nó cứ thế nào ấy. Rút gọn cũng chỉ được một chút thôi, chẳng gọn lắm

a) chịu chưa nghĩ ra

24 tháng 11 2018

a, Xét tử thức \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)

\(=x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left[\left(x-z\right)-\left(y-z\right)\right]\)

\(=x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-z\right)-z^2\left(y-z\right)\)

\(=\left(x^2-z^2\right)\left(y-z\right)-\left(y^2-z^2\right)\left(x-z\right)\)

\(=\left(x-z\right)\left(x+z\right)\left(y-z\right)-\left(y-z\right)\left(y+z\right)\left(x-z\right)\)

\(=\left(x-z\right)\left(xy-xz+yz-z^2-y^2-yz+yz+z^2\right)\)

\(=\left(x-z\right)\left(xy-xz+yz-y^2\right)=\left(x-z\right)\left[x\left(y-z\right)-y\left(y-z\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(y-z\right)\)

Mẫu thức \(x^2y-x^2z+y^2z-y^3=x^2\left(y-z\right)-y^2\left(y-z\right)=\left(x-y\right)\left(x+y\right)\left(y-z\right)\)

Vậy \(\frac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}=\frac{x-z}{x+y}\)

b, \(\frac{x^5+x+1}{x^3+x^2+x}=\frac{x^5-x^2+x^2+x+1}{x\left(x^2+x+1\right)}=\frac{x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1}{x\left(x^2+x+1\right)}=\frac{\left(x^2+x+1\right)\left(x^3-x^2+1\right)}{x\left(x^2+x+1\right)}=\frac{x^3-x^2+1}{x}\)