Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2]\(\sqrt{3}\)+1+\(\sqrt{4-4\sqrt{3}+3}\)=\(\sqrt{3}+1+\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{3}+1+2-\sqrt{3}=3\)
4\(\left(\dfrac{\sqrt{3}.\left(2+\sqrt{3}\right)+2.\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right).\left(2+\sqrt{3}\right)}\right)=\dfrac{\sqrt{3}.\left(2+\sqrt{3}\right)+2.\left(2-\sqrt{3}\right)}{1}\)
1: \(=2\sqrt{7}-12\sqrt{7}+15\sqrt{7}+27\sqrt{7}=32\sqrt{7}\)
3: \(=\sqrt{5}-2-\sqrt{14+6\sqrt{5}}\)
\(=\sqrt{5}-2-3-\sqrt{5}=-5\)
4: \(=2\sqrt{3}+3+4-2\sqrt{3}=7\)
5: \(=3-\sqrt{2}+3+\sqrt{2}+4-3=7\)
6: \(=\sqrt{\dfrac{6+2\sqrt{5}}{4}}+\sqrt{\dfrac{14-6\sqrt{5}}{4}}\)
\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}}{2}=\dfrac{4}{2}=2\)
8: \(=\sqrt{5}-1+\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{4}}-\sqrt{\dfrac{\left(3+\sqrt{5}\right)^2}{4}}\)
\(=\sqrt{5}-1+\dfrac{3-\sqrt{5}}{2}-\dfrac{3+\sqrt{5}}{2}\)
\(=\dfrac{2\sqrt{5}-2+3-\sqrt{5}-3-\sqrt{5}}{2}=\dfrac{-2}{2}=-1\)
Câu b nhé:
Ta có:
\(\dfrac{1}{\sqrt{25}+\sqrt{24}}+\dfrac{1}{\sqrt{24}+\sqrt{23}}+\dfrac{1}{\sqrt{23}+\sqrt{22}}+...+\dfrac{1}{\sqrt{2}+\sqrt{1}}\\ =\dfrac{\sqrt{25}-\sqrt{24}}{\left(\sqrt{25}+\sqrt{24}\right)\left(\sqrt{25}-\sqrt{24}\right)}+\dfrac{\sqrt{24}-\sqrt{23}}{\left(\sqrt{24}+\sqrt{23}\right)\left(\sqrt{24}-\sqrt{23}\right)}+...+\dfrac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}+\sqrt{1}\right)\left(\sqrt{2}-\sqrt{1}\right)}\\ =\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+...+\sqrt{2}-\sqrt{1}\\ =5-1=4\left(đpcm\right)\)
1: \(=\sqrt{6}+\sqrt{6}+1=2\sqrt{6}+1\)
2: \(=\dfrac{6\left(1-\sqrt{3}\right)}{1-\sqrt{3}}+\dfrac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=6+3=9\)
3: \(=\sqrt{3}+1-\sqrt{3}=1\)
a/ \(\dfrac{1}{7+4\sqrt{3}}+\dfrac{1}{7-4\sqrt{3}}=7-4\sqrt{3}+7+4\sqrt{3}=14\)
a) \(\dfrac{1}{7+4\sqrt{3}}+\dfrac{1}{7-4\sqrt{3}}=\dfrac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
\(=\dfrac{14}{49-48}=\dfrac{14}{1}=14\)
b) \(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}+2}-\dfrac{12}{3-\sqrt{6}}=\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}+2}\right)-\dfrac{12}{3-\sqrt{6}}\)
\(=\left(\dfrac{15\left(\sqrt{6}+2\right)+4\left(\sqrt{6}+1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}+2\right)}\right)-\dfrac{12}{3-\sqrt{6}}=\dfrac{15\sqrt{6}+30+4\sqrt{6}+4}{6+2\sqrt{6}+\sqrt{6}+2}-\dfrac{12}{3-\sqrt{6}}\) \(=\dfrac{34+19\sqrt{6}}{8+3\sqrt{6}}-\dfrac{12}{3-\sqrt{6}}=\dfrac{\left(34+19\sqrt{6}\right)\left(3-\sqrt{6}\right)-12\left(8+3\sqrt{6}\right)}{\left(8+3\sqrt{6}\right)\left(3-\sqrt{6}\right)}\)
\(=\dfrac{102-34\sqrt{6}+57\sqrt{6}-114-96-36\sqrt{6}}{24-8\sqrt{6}+9\sqrt{6}-18}=\dfrac{-108-13\sqrt{6}}{6+\sqrt{6}}\)
c) \(\sqrt{2+\sqrt{3}}+\sqrt{2+\sqrt{3}}=2\sqrt{2+\sqrt{3}}=\sqrt{2}.\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{2}.\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{6}+\sqrt{2}\)
câu này mk cảm thấy đề sai thì phải ; mà nếu o phải đề sai thì lời giải đó nha
Bài 1 bạn nhóm , trục như thường nhé :D
Bài 2. \(a.A=\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{3}.\sqrt{2}+2}-\sqrt{3-2\sqrt{3}.\sqrt{2}+2}=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
\(b.B=\sqrt{17-12\sqrt{2}}-\sqrt{9+4\sqrt{2}}=\sqrt{9-2.2\sqrt{2}.3+8}-\sqrt{8+2.2\sqrt{2}+1}=3-2\sqrt{2}-2\sqrt{2}-1=2-4\sqrt{2}\)
\(c.C=\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{8+2.2.\sqrt{2}+1}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{43+30\sqrt{2}}=\sqrt{25+2.3\sqrt{2}.5+18}=5+3\sqrt{2}\)
\(d.D=\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
\(D^2=24-2\sqrt{\left(12-3\sqrt{7}\right)\left(12+3\sqrt{7}\right)}=24-2\sqrt{81}=24-18=6\)
\(D=-\sqrt{6}\left(do:D< 0\right)\)
\(1.A=\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}=\dfrac{1}{2}\sqrt{\dfrac{1}{3}.144}-2\sqrt{\dfrac{1}{3}.225}-\sqrt{\dfrac{1}{3}.9}+5\sqrt{\dfrac{4}{3}}=6\sqrt{\dfrac{1}{3}}-30\sqrt{\dfrac{1}{3}}-3\sqrt{\dfrac{1}{3}}+10\sqrt{\dfrac{1}{3}}=-17\sqrt{\dfrac{1}{3}}\) \(2.B=\left(2\sqrt{27}-3\sqrt{48}+3\sqrt{75}-\sqrt{192}\right)\left(1-\sqrt{3}\right)=\left(6\sqrt{3}-12\sqrt{3}+15\sqrt{3}-8\sqrt{3}\right)\left(1-\sqrt{3}\right)=\sqrt{3}\left(1-\sqrt{3}\right)=\sqrt{3}-3\) \(3.C=\left(2\sqrt{7}-2\sqrt{6}\right).\sqrt{6}-\sqrt{168}=2\sqrt{42}-12-2\sqrt{42}=-12\) \(4.D=\left(\sqrt{28}-2\sqrt{8}+\sqrt{7}\right).\sqrt{7}+4\sqrt{14}=\left(3\sqrt{7}-4\sqrt{2}\right)\sqrt{7}=21-4\sqrt{14}+4\sqrt{14}=21\)
a: \(=\dfrac{6}{4+\sqrt{3}-1}=\dfrac{6}{3+\sqrt{3}}=3-\sqrt{3}\)
b: \(=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right)\cdot\dfrac{1}{\sqrt{6}}=\sqrt{6}\cdot\dfrac{1}{\sqrt{6}}\left(\dfrac{1}{2}-2\right)=-\dfrac{3}{2}\)
a: \(=\dfrac{2\sqrt{7}-10-6+2\sqrt{7}}{4}+4+2\sqrt{7}-\dfrac{20}{9}+\dfrac{5}{9}\sqrt{7}\)
\(=\sqrt{7}-4+\dfrac{23}{9}\sqrt{7}+\dfrac{16}{9}\)
\(=\dfrac{32}{9}\sqrt{7}-\dfrac{20}{9}\)
b:\(=\dfrac{2\sqrt{6}+4+2\sqrt{6}-4}{2}+\dfrac{5}{6}\sqrt{6}\)
\(=2\sqrt{6}+\dfrac{5}{6}\sqrt{6}=\dfrac{17}{6}\sqrt{6}\)
c: \(=\dfrac{1}{3}\sqrt{3}+\dfrac{1}{6}\sqrt{2}+\dfrac{1}{\sqrt{3}}\cdot\sqrt{\dfrac{5-2\sqrt{6}}{12}}\)
\(=\dfrac{1}{3}\sqrt{3}+\dfrac{1}{6}\sqrt{2}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)
\(=\dfrac{2\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}}{6}=\dfrac{3\sqrt{3}}{6}=\dfrac{\sqrt{3}}{2}\)
a: \(=\left(\dfrac{\sqrt{2}}{4}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\cdot10\sqrt{2}\right)\cdot8\)
\(=2\sqrt{2}-12\sqrt{2}+64\sqrt{2}\)
\(=54\sqrt{2}\)
b: \(=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}=9\)
c: \(=\dfrac{\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
d: \(=\sqrt{\dfrac{4-2\sqrt{3}}{4}}+\dfrac{1-\sqrt{3}}{2}\)
\(=\dfrac{\sqrt{3}-1+1-\sqrt{3}}{2}=0\)
bạn nên tự nghiên cứu rồi giải đi chứ bạn đưa 1 loạt thế thì ai rảnh mà giải, với lại cứ bài gì không biết chưa chịu suy nghĩ đã hỏi rồi thì tiến bộ sao được, đúng không
a: \(=\dfrac{6+4\sqrt{2}}{\sqrt{2}+2+\sqrt{2}}+\dfrac{6-4\sqrt{2}}{\sqrt{2}-2+\sqrt{2}}\)
\(=\dfrac{6+4\sqrt{2}}{2+2\sqrt{2}}+\dfrac{6-4\sqrt{2}}{2\sqrt{2}-2}\)
\(=\dfrac{3+2\sqrt{2}}{\sqrt{2}+1}+\dfrac{3-2\sqrt{2}}{\sqrt{2}-1}\)
=căn 2+1+căn 2-1=2căn 2
b: \(=\dfrac{\sqrt{3}+\sqrt{3+\sqrt{3}}+\sqrt{3}-\sqrt{3+\sqrt{3}}}{1-\sqrt{3}-1}=\dfrac{-2\sqrt{3}}{\sqrt{3}}=-2\)
bạn ơi cho mình hỏi câu b chi tiết hơn đước ko ạ
mình chưa hiểu lắm