\(\sqrt{\left(120-11\right)^2}+\sqrt{\left(10-\sqrt{120}\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2021

\(\sqrt{\left(120-11\right)^2}+\sqrt{\left(10-\sqrt{120}\right)^2}\)

\(=120-11+10+\sqrt{120}\)

\(=\sqrt{120}\left(\sqrt{120}+1\right)-1\)

18 tháng 9 2021

\(a,=\left(120-11\right)+\left|10-\sqrt{120}\right|=109+\sqrt{120}-10=99+2\sqrt{30}\\ b,=\sqrt{\left(\sqrt{x+1}+1\right)^2-\left(\sqrt{x+1}+1\right)^2}=\sqrt{0}=0\)

15 tháng 8 2016

a) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)

b) \(\frac{x-1}{\sqrt{y}-1}\cdot\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}+1}\cdot\sqrt{\frac{\left(\sqrt{y}-1\right)^4}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}+1}\cdot\frac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)

15 tháng 8 2016

a)\(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x+1}\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

b)\(\frac{x-1}{\sqrt{y}-1}\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}\cdot\frac{\sqrt{\left(\sqrt{y}-1\right)^{2^2}}}{\sqrt{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}\cdot\frac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)

2 tháng 7 2019

\(a,\frac{\sqrt{108x^3}}{\sqrt{12x}}=\frac{\sqrt{36.3.x^3}}{\sqrt{3.4.x}}=\frac{6\sqrt{3}.\sqrt{x}^3}{2\sqrt{3}.\sqrt{x}}=3\sqrt{x}^2=3x\)

\(b,\frac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}=\frac{\sqrt{13}.\sqrt{x^4}.\sqrt{y^6}}{\sqrt{16.13}.\sqrt{x^6}.\sqrt{y^6}}=\frac{\sqrt{13}.x^2y^3}{4\sqrt{13}x^3y^3}=\frac{1}{4x}\)

\(c,\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}+\sqrt{y}\right)^2\)

\(=\frac{\sqrt{x}^3+\sqrt{y}^3}{\sqrt{x}+\sqrt{y}}-\left(x+2\sqrt{xy}+y\right)\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x-2\sqrt{xy}-y\)

\(=x-\sqrt{xy}+y-x-2\sqrt{xy}-y=-3\sqrt{xy}\)

2 tháng 7 2019

\(d,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

Đk chỗ này là \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge\sqrt{1}\Rightarrow x\ge1\)nhé 

\(e,\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}.\frac{y-2\sqrt{y}+1}{\left(x-1\right)^2}\)

\(=\frac{\left(x-1\right)\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}-1\right)\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)

24 tháng 3 2019

Câu 2:

\(A=9\sqrt{a}-7\sqrt{a}+11\sqrt{a}=13\sqrt{a}\)

\(a=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\)

Thay vào A:

\(A=13\left(\sqrt{2}+1\right)=13\sqrt{2}+13\)

4 tháng 7 2017

\(a,\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)

\(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)

\(=\sqrt{xy}\)

\(b,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)

\(=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

Chúc bạn học giỏi 

Kết bạn với mình nha 

25 tháng 6 2017

a)\(\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)=1-\sqrt{x^3}\)

b) \(\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)=\sqrt{x^3}+8\)

c)\(\left(\sqrt{x}-\sqrt{y}\right)\left(x+y+\sqrt{xy}\right)=\sqrt{x^3}-\sqrt{y^3}\)

d)\(\left(x+\sqrt{y}\right)\left(x^2+y-x\sqrt{y}\right)=x^3+\sqrt{y^3}\)

27 tháng 10 2020

a) \(\sqrt{12}-3\sqrt{75}+0,5\sqrt{\left(-6\right)^2\cdot3}\)

\(=2\sqrt{3}-15\sqrt{3}+0,5\sqrt{108}\)

\(=-13\sqrt{3}+3\sqrt{3}\)

\(=-10\sqrt{3}\)

b) \(3\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}-\sqrt{4+2\sqrt{3}}\)

\(=3\left|\sqrt{2}-\sqrt{3}\right|-\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=3\left(\sqrt{3}-\sqrt{2}\right)-\left|\sqrt{3}+1\right|\)

\(=3\sqrt{3}-3\sqrt{2}-\sqrt{3}-1\)

\(=2\sqrt{3}-3\sqrt{2}-1\)

c) \(\left(\frac{2x+1}{x\sqrt{x}-1}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right)\div\frac{1}{x-2\sqrt{x}+1}\)

\(=\frac{2x+1-\left(\sqrt{x}-1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\div\frac{1}{\left(\sqrt{x}-1\right)^2}\)

\(=\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\)

\(=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\)

\(=\sqrt{x}-1\)

16 tháng 7 2019

\(A=4\sqrt{x}-\frac{x+6\sqrt{x}+9}{x-9}\)

\(=4\sqrt{x}-\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=4\sqrt{x}-\frac{\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)}\)

\(=\frac{4\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}-3}-\frac{\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)}\)

\(=\frac{4x-12\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-3}\)

\(=\frac{4x-13\sqrt{x}-3}{\sqrt{x}-3}\)

C.Tham khảo ở dây:Câu hỏi của Đặng Phương Thảo - Toán lớp 9 - Học toán với OnlineMath

16 tháng 7 2019

\(B=\frac{5\sqrt{x}-\left(x-10\sqrt{x}+25\right)\left(\sqrt{x}+5\right)}{x-25}\)

\(=\frac{5\sqrt{x}-\left(\sqrt{x}-5\right)^2\left(\sqrt{x}+5\right)}{x-25}\)

\(=\frac{5\sqrt{x}-\left(\sqrt{x}-5\right)\left(x-25\right)}{x-25}\)

\(=\frac{5\sqrt{x}-\left(x\sqrt{x}-25\sqrt{x}-5x+125\right)}{x-25}\)

\(=\frac{5\sqrt{x}-x\sqrt{x}+25\sqrt{x}+5x-125}{x-25}\)

\(=\frac{-x\sqrt{x}+30\sqrt{x}+5x-125}{x-25}\)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~