Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,,A=|x-3|+1
Ta thấy:\(\left|x-3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+1\ge0+1=1\)
\(\Rightarrow A\ge1\).Dấu = khi x=3
Vậy....
b)B=|6-2x|-5
Ta thấy:\(\left|6-2x\right|\ge0\)
\(\Rightarrow\left|6-2x\right|-5\ge0-5=-5\)
\(\Rightarrow B\ge-5\).Dấu = khi x=3
Vậy...
c) C=3-|x+1|
Ta thấy:\(-\left|x+1\right|\le0\)
\(\Rightarrow3-\left|x+1\right|\le3-0=3\)
\(\Rightarrow C\le3\).Dấu = khi x=-1
e) E= -(x+1)^2 -|2-y|+11
Ta thấy:\(\hept{\begin{cases}-\left(x+1\right)^2\\-\left|2-y\right|\end{cases}\le}0\)
\(\Rightarrow-\left(x+1\right)^2-\left|2-y\right|\le0\)
\(\Rightarrow-\left(x+1\right)^2-\left|2-y\right|+11\le0+11=11\)
\(\Rightarrow E\le11\).Dấu = khi x=-1 y=2
Vậy...
f)F= (x-1)^2+|2y+2|-3
Ta thấy:\(\hept{\begin{cases}\left(x-1\right)^2\\\left|2y+2\right|\end{cases}}\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge0-3=-3\)
\(\Rightarrow F\ge-3\).Dấu = khi x=1 y=-1
Vậy...
a) Ta có: \(x^2\ge0\forall x\in Q\)
\(y^2\ge0\forall x\in Q\)
\(\Rightarrow x^2+y^2+2014\ge2014\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 2014, xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
b, Ta có: \(\left(x+30\right)^2\ge0\forall x\in Q\)
\(\left(y-4\right)^2\ge0\forall x\in Q\)
\(\Rightarrow\left(x+30\right)^2+\left(y-4\right)^2+17\ge17\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 17, xảy ra khi \(\left\{{}\begin{matrix}\left(x+30\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-30\\y=4\end{matrix}\right.\)
c, Ta có: \(\left(y-9\right)^2\ge0\forall x\in Q\)
\(\left|x-3\right|\ge0\forall x\in Q\)
\(\Rightarrow\left(y-9\right)^2+\left|x-3\right|^2-1\ge-1\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là -1 xảy ra khi \(\left\{{}\begin{matrix}\left(y-9\right)^2=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x=3\end{matrix}\right.\)
Bạn nói qua thôi vì dài
A, bạn lập bẳng ra x,y thuộc ước của -21
B,Bạn cũng lập bảng thuộc ước của -35.Lưu Ý:(2x-1) là số lẻ còn (2x+10) lẻ nốt
c,Phân tích khi mở ngoặc chuyển vế sao cho ra kết quả
D, hai trường hợp xảy ra.TH1:Vế trái bằng 0:TH2:Vế phải bằng 0
A = ( 71 + x ) - ( -24 - x ) + ( -35 - x )
= 71 + x - ( -24 ) + x + ( -35 ) + x
= 71 - ( -24 ) + ( -35 ) + x . 3
= 60 + 3x
= 3 ( 20 + x )
B = x - 34 - [ ( 15 + x ) - ( 23 - x ) ]
= x - 34 - [ 15 + x - 23 + x ]
= x - 34 - ( 15 - 23 ) - 2x
= x - 34 - ( -8 ) - 2x
= x - 26 - 2x
= ( -x ) - 26
C ) tương tự
giúp mình với