Rút gọn các biểu thức sau:

a) A =...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2021

ĐKXĐ : \(\hept{\begin{cases}ab-2\ne0\\ab+2\ne0\\a^4b^4\ne0\end{cases}}\Rightarrow ab\ne\pm2;a\ne0;b\ne0\)

\(P=\left(\frac{1}{ab-2}+\frac{1}{ab+2}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)

\(=\left(\frac{2ab}{a^2b^2-4}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)

\(=\left(\frac{4a^3b^3}{a^4b^4-16}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)

\(=\frac{8a^5b^5}{a^8b^8-16^2}.\frac{a^4b^4+16}{a^4b^4}=\frac{8a^5b^5\left(a^4b^4+16\right)}{\left(a^4b^4-16\right)\left(a^4b^4+16\right).a^4b^4}\)

\(=\frac{8ab}{a^4b^4-16}\)

b) Khi \(\frac{a^2+4}{b^2+9}=\frac{a^2}{9}\)

=> (a2 + 4).9 = a2(b2 + 9)

=> 9a2 + 36 = a2b2 + 9a2

=> a2b2 = 36

=> (ab)2 = 36

=> \(\orbr{\begin{cases}ab=6\left(tm\right)\\ab=-6\left(tm\right)\end{cases}}\)

Khi ab = 6 => P = \(\frac{8ab}{\left(ab\right)^4-16}=\frac{8.6}{6^4-16}=\frac{48}{1280}=\frac{3}{80}\)

Khi ab = -6 => P = \(\frac{8ab}{\left(ab\right)^4-16}=\frac{8.\left(-6\right)}{\left(-6\right)^4-16}=-\frac{3}{80}\)

8 tháng 8 2017

Ta có :

a)\(\frac{m^4-m}{2m^2+2m+2}=\frac{m\left(m^3-1\right)}{2\left(m^2+m+1\right)}=\frac{m\left(m-1\right)\left(m^2+m+1\right)}{2\left(m^2+m+1\right)}=\frac{m^2-m}{2}\)

b) \(\frac{ab^2+a^3-a^2b}{a^3b+b^4}=\frac{a\left(a^2-ab+b^2\right)}{b\left(a^3+b^3\right)}=\frac{a\left(a^2-ab+b^2\right)}{b\left(a+b\right)\left(a^2-ab+b^2\right)}=\frac{a}{ab+b^2}\)

29 tháng 11 2016

1, b) \(\frac{x^2+y^2-4+2xy}{x^2-y^2+4+4x}\) = \(\frac{\left(x^2+2xy+y^2\right)-4}{\left(x^2+4x+4\right)-y^2}\) =\(\frac{\left(x+y\right)^2-2^2}{\left(x+2\right)^2-y^2}\)= \(\frac{\left(x+y+2\right)\left(x+y-2\right)}{\left(x+2+y\right)\left(x+2-y\right)}\) = \(\frac{x+y-2}{x+2-y}\)

2, A= \(\frac{a^2+ax+ab+bx}{a^2+ax-ab-bx}\) = \(\frac{\left(a^2+ax\right)+\left(ab+bx\right)}{\left(a^2+ax\right)-\left(ab+bx\right)}\) = \(\frac{a\left(a+x\right)+b\left(a+x\right)}{a\left(a+x\right)-b\left(a+x\right)}\)= \(\frac{\left(a+x\right)\left(a+b\right)}{\left(a+x\right)\left(a-b\right)}\)= \(\frac{a+b}{a-b}\)

30 tháng 11 2016

THANKS BN

2 tháng 9 2019

\(a,\left(-4xy-5\right)\left(5-4xy\right)=\left(4xy+5\right)\left(4xy-5\right).\)

\(=\left(4xy\right)^2-5^2=16x^2y^2-25\)

\(b,\left(a^2b+ab^2\right)\left(ab^2-a^2b\right)=\left(ab^2+a^2b\right)\left(ab^2-a^2b\right)\)

\(=\left(ab^2\right)^2-\left(a^2b\right)^2=a^2b^4-a^4b^2\)

\(c,\left(3x-4\right)^2+2\left(3x-4\right)\left(4-x\right)+\left(4-x\right)^2\)

\(=\left[\left(3x-4\right)+\left(4-x\right)\right]^2\)

\(=\left(3x-4+4-x\right)^2=\left(2x\right)^2=4x^2\)

\(d,\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)-\left(a^4+b^4\right)\)

\(=\left[\left(a^2+b^2\right)+ab\right]\left[\left(a^2+b^2\right)-ab\right]-\left(a^4+b^4\right)\)

\(=\left(a^2+b^2\right)^2-\left(ab\right)^2-a^4-b^4\)

\(=a^4+2a^2b^2+b^4-a^2b^2-a^4-b^4=a^2b^2\)

25 tháng 7 2021

Ta có: a + b + c = 0

<=> a2 + b2 + c2 + 2(ab + bc + ac) = 0

<=> a2 + b2 + c2 = -2(ab + bc + ac)

<=> a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2 = 4[a2b2 + b2c2 + a2c2 + 2abc(a + b + c)] (vì a + b + c= 0)

<=> a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2) = 4(a2b2 + b2c2 + a2c2)

<=> a4 + b4 + c4 = 2(a2b2 + b2c2 + a2c2) (đpcm)

b) Từ a4 + b4 + c4 = 2(a2b2 + b2c2 + a2c2)

<=> (a4 + b4 + c4)/2 = a2b2 + b2c2 + a2c2 + 2abc(a + b + c) (vì a + b + c) = 0

<=> (a4 + b4 + c4)/2 = (ab + bc + ac)2

<=> a4 + b4 + c4 = 2(ab + bc + ac)2 (đpcm)

c) Từ a4 + b4 + c4 = 2(a2b2 + b2c2 + a2c2)

<=> 2(a4 + b4 + c4) = a4+ b4 + c4 + 2(a2b2 + b2c2 + a2c2)

<=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2

<=> a4 + b4 + c4 = (a2 + b2 + c2)2/2 (đpcm) 

19 tháng 7 2017

a) \(a^4-5a^2+4=\)\(\left(a^4-4a^2\right)-\left(a^2-4\right)=a^2\left(a^2-4\right)-\left(a^2-4\right)=\left(a^2-1\right)\left(a^2-4\right)\)

\(=\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)\)

\(a^4-a^2+4a-4=a^2\left(a^2-1\right)+4\left(a-1\right)=a^2\left(a-1\right)\left(a+1\right)+4\left(a-1\right)\)

\(=\left(a-1\right)\left[a^2\left(a+1\right)+4\right]=\left(a-1\right)\left(a^3+a^2+4\right)\)

\(a^3+a^2+4=\left(a^3+2a^2\right)-\left(a^2+2a\right)+\left(2a+4\right)=a^2\left(a+2\right)-a\left(a+2\right)+2\left(a+2\right)\)

\(=\left(a^2-a+2\right)\left(a+2\right)\)

\(N=\frac{\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)}{\left(a-1\right)\left(a+2\right)\left(a^2-a+2\right)}=\frac{\left(a+1\right)\left(a-2\right)}{a^2-a+2}\)

17 tháng 5 2020

em chịu