\(\frac{2+\sqrt{2}}{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016
  • \(\frac{2+\sqrt{2}}{1+\sqrt{2}}=\frac{\sqrt{2}\left(1+\sqrt{2}\right)}{1+\sqrt{2}}=\sqrt{2}\)
  • \(\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=-\sqrt{5}\)
  • \(\frac{2\sqrt{3}-\sqrt{6}}{1-\sqrt{3}}=\frac{-\sqrt{6}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=-\sqrt{6}\)
  • \(\frac{a-\sqrt{a}}{1-\sqrt{a}}=\frac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}=-\sqrt{a}\)
  • \(\frac{p-2\sqrt{p}}{\sqrt{p}-2}=\frac{\sqrt{p}\left(\sqrt{p}-2\right)}{\sqrt{p}-2}=\sqrt{p}\)
17 tháng 8 2016

a/ \(\sqrt{8\left(\sqrt{2}-\sqrt{3}\right)^2}=2\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)=2\sqrt{6}-4\)

b/ \(ab\sqrt{1+\frac{1}{a^2b^2}}=ab.\sqrt{\frac{a^2b^2+1}{a^2b^2}}=\sqrt{a^2b^2.\frac{a^2b^2+1}{a^2b^2}}=\sqrt{a^2b^2+1}\)

c/ \(\sqrt{\frac{a}{b^3}+\frac{a}{b^4}}=\sqrt{\frac{a}{b^3}\left(1+\frac{1}{b}\right)}=\frac{1}{b}.\sqrt{\frac{a}{b}\left(1+\frac{1}{b}\right)}\)

d/ \(\frac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}=\frac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\sqrt{a}\)

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

27 tháng 8 2017

mình đâu có hỏi tuổi của ai??????????????????

15 tháng 7 2019

a ) \(A=\frac{1}{\sqrt{5}+\sqrt{3}}-\frac{1}{\sqrt{5}-\sqrt{3}}\)

\(=\frac{\left(\sqrt{5}-\sqrt{3}\right)-\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}\)

\(=\frac{\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}}{5-3}\)

\(=\frac{-2\sqrt{3}}{2}\)

\(=-\sqrt{3}\)

15 tháng 7 2019

c ) \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)

\(=\frac{1}{2+\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{2}{\sqrt{3}\left(\sqrt{3}+1\right)}\)

\(=\frac{\sqrt{3}\left(\sqrt{3}+1\right)+\left(2+\sqrt{3}\right)\left(\sqrt{3}+1\right)-2\left(2+\sqrt{3}\right)}{\sqrt{3}\left(\sqrt{3}+1\right)\left(2+\sqrt{3}\right)}\)

\(=\frac{2\sqrt{3}+4}{\sqrt{3}\left(\sqrt{3}+1\right)\left(2+\sqrt{3}\right)}\)

\(=\frac{2\left(\sqrt{3}+2\right)}{\sqrt{3}\left(\sqrt{3}+1\right)\left(2+\sqrt{3}\right)}\)

\(=\frac{2.\sqrt{3}\left(\sqrt{3}-1\right)}{3\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\sqrt{3}\left(\sqrt{3}-1\right)}{3.\left(3-1\right)}\)

\(=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{3}\)

\(=\frac{3-\sqrt{3}}{3}\)

\(=1-\frac{\sqrt{3}}{3}\)

13 tháng 7 2016

a) \(\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\(=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{ab}-1}\)

b) \(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}=\frac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}=\sqrt{\frac{x}{y}}\)

c) \(\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\frac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\sqrt{\frac{3}{7}}\)

d) \(\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}=\frac{2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\sqrt{5}\left(\sqrt{1}-\sqrt{2}\right)-\sqrt{3}\left(1-\sqrt{2}\right)}\)

\(=\frac{\left(2\sqrt{5}-\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{5}-\sqrt{3}\right)\left(1-\sqrt{2}\right)}=\frac{\sqrt{3}-\sqrt{2}}{1-\sqrt{2}}\)

e) \(\frac{-3\sqrt{3}+3}{2\sqrt{3}-2}=\frac{-3\left(\sqrt{3}-1\right)}{2\left(\sqrt{3}-1\right)}=-\frac{3}{2}\)

18 tháng 8 2016

a) \(\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\frac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\sqrt{\frac{3}{7}}\)

b) \(\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}=\frac{2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\sqrt{5}\left(1-\sqrt{2}\right)-\sqrt{3}\left(1-\sqrt{2}\right)}=\frac{\left(2\sqrt{5}-\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{5}-\sqrt{3}\right)\left(1-\sqrt{2}\right)}=\frac{\sqrt{3}-\sqrt{2}}{1-\sqrt{2}}\)

c) \(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}=\frac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}}{\sqrt{y}}\) (Bạn tự thêm đk)

d) \(\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{ab}-1}\) (Bạn tự thêm đk)

17 tháng 11 2017

a, = \(\sqrt{a^2b^2.\left(1+\frac{1}{a^2b^2}\right)}\) = \(\sqrt{a^2b^2+1}\)

c, = \(\sqrt{\frac{a+ab}{b^4}}\) = \(\frac{\sqrt{a+ab}}{b^2}\)

k mk nha

17 tháng 11 2017

a, \(ab\sqrt{1+\frac{1}{a^2b^2}}\)

 \(ab\sqrt{1+\frac{1}{a^2b^2}}=ab\sqrt{\frac{1+a^2b^2}{a^2b^2}}=\frac{ab}{\left|ab\right|}\sqrt{1+a^2b^2}\)

\(=\hept{\begin{cases}\sqrt{1+a^2b^2}ĐK:ab>0\\-\sqrt{1+a^2b^2}ĐKab< 0\end{cases}}\)

b, \(\sqrt{\frac{a}{b^3}+\frac{a}{b^4}}\)

\(\sqrt{\frac{a}{b^3}+\frac{a}{b^4}}=\sqrt{\frac{a+ab}{b^4}}=\frac{1}{b^2}\sqrt{a+ab}\)