\(\frac{x^2-4}{2}\sqrt{\frac{4}{x^2-4x+4}}\) với x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
14 tháng 5 2019

a) A \(=\frac{x^2-4}{2}\cdot\sqrt{\frac{2^2}{\left(x-2\right)^2}}\) \(=\frac{x^2-4}{2}\cdot\left|\frac{2}{x-2}\right|\)

+ Với x < 2 ta có \(A=\frac{x^2-4}{2}\cdot\frac{2}{2-x}\)

\(A=\frac{\left(x+2\right)\left(x-2\right)}{2-x}=-\left(x+2\right)\)

+ Với x > 2 ta có : \(A=\frac{x^2-4}{2}\cdot\frac{2}{x-2}\)

\(A=\frac{\left(x-2\right)\left(x+2\right)}{x-2}=x+2\)

câu b và c tương tự

16 tháng 8 2016

a)\(\sqrt{\frac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\frac{x^2-1}{x-3}=\frac{\sqrt{\left(x-2\right)^4}}{\sqrt{\left(3-x\right)^2}}+\frac{x^2-1}{x-3}=\frac{\left(x-2\right)^2}{x-3}+\frac{x^2-1}{x-3}=\frac{x^2-4x+4+x^2-1}{x-3}=\frac{2x^2-4x+3}{x-3}\)

Tại x=0,5 thay vào ta có:

\(A=\frac{2\cdot\left(0,5\right)^2-4\cdot0,5+3}{0,5-3}=-\frac{3}{5}\)

b)\(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}=4x-\sqrt{8}+\frac{\sqrt{x^2\left(x+2\right)}}{\sqrt{x+2}}=4x-\sqrt{8}+\frac{\sqrt{x^2}\cdot\sqrt{x+2}}{\sqrt{x+2}}\)\(=4x-\sqrt{8}+x^2\)

Tại \(x=-\sqrt{2}\) thay vào ta có:

\(B=4\cdot\left(-\sqrt{2}\right)+\left(-\sqrt{2}\right)^2=2-4\sqrt{2}\)

 

30 tháng 7 2016

b) \(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)

\(=4x-\sqrt{8}+\frac{\sqrt{x^2\left(x+2\right)}}{x+2}\)

\(=4x-\sqrt{8}+\frac{x\left(x+2\right)}{x+2}\)

\(=4x-\sqrt{8}+x\)

\(=5x-\sqrt{8}\)

Với \(x=-\sqrt{2}\) ta có:

  \(5x-\sqrt{8}=5\cdot\left(-\sqrt{2}\right)-\sqrt{4\cdot2}=-5\sqrt{2}-2\sqrt{2}=-7\sqrt{2}\)

9 tháng 7 2019

a) \(4x-\sqrt{x^2-4x+4}=4x-\sqrt{\left(x-2\right)^2}=4x-\left(x-2\right)=3x+2\)

b) \(3x+\sqrt{9+6x+x^2}=3x+\sqrt{\left(x+3\right)^2}=3x-\left(x+3\right)=2x-3\)

c) \(\frac{x+6\sqrt{x}+9}{x-9}=\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)

d) \(\frac{\sqrt{x^2+4x+4}}{x+2}=\frac{\sqrt{\left(x+2\right)^2}}{x+2}=\frac{\left|x+2\right|}{x+2}\)( 1 )

với x < -2 thì : \(\left(1\right)\Leftrightarrow\frac{-\left(x+2\right)}{x+2}=-1\)

với x > -2 thì : \(\left(1\right)\Leftrightarrow\frac{\left(x+2\right)}{x+2}=1\)

24 tháng 7 2019

B4

a) \(\frac{9}{\sqrt{3}}=\frac{9\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{3}}=\frac{9\sqrt{3}}{3}=3\sqrt{3}\)

b)\(\frac{3}{\sqrt{5}-\sqrt{2}}=\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}=\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}=\sqrt{5}+\sqrt{2}\)

c)\(\frac{\sqrt{2}+1}{\sqrt{2}-1}=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\frac{\left(\sqrt{2}+1\right)^2}{1}=\left(\sqrt{2}+1\right)^2\)

d)\(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{1}=14\)

24 tháng 7 2019

B3

a)\(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\) \(đk:x\ge1\)

\(\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\sqrt{x-1}\cdot\left(\frac{1}{2}-\frac{9}{2}+3\right)=-17\)

\(\sqrt{x-1}\cdot\left(-1\right)=-17\)

\(\sqrt{x-1}=17\)

\(\left[{}\begin{matrix}x-1=289\left(tm\right)\\x-1=-289\left(ktm\right)\end{matrix}\right.\)

\(x=290\left(tm\right)\)

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2