\(\dfrac{a+\sqrt{ab}}{b+\sqrt{ab}}\) (a,b > 0)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2022

a/

\(A=\dfrac{\left(a+\sqrt{ab}\right)\left(b-\sqrt{ab}\right)}{b^2-ab}=\dfrac{ab-a\sqrt{ab}+b\sqrt{ab}-ab}{b^2-ab}=\)

\(=\dfrac{\sqrt{ab}\left(b-a\right)}{b\left(b-a\right)}=\sqrt{\dfrac{a}{b}}\)

b/

\(B=\dfrac{x\sqrt{x}+y\sqrt{y}-x\sqrt{y}-y\sqrt{x}}{\sqrt{x}+\sqrt{y}}=\)

\(=\dfrac{\sqrt{x}\left(x-y\right)-\sqrt{y}\left(x-y\right)}{\sqrt{x}+\sqrt{y}}=\dfrac{\left(x-y\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\)

\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\)

\(=\left(\sqrt{x}-\sqrt{y}\right)^2\)

a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)

b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)

\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)

c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)

\(=\sqrt{x}+2-\sqrt{x}-2=0\)

Bài 2: 

a: \(=\sqrt{\left(\dfrac{1}{5a}\right)^2}=\dfrac{1}{\left|5a\right|}=\dfrac{-1}{5a}\)

b: \(=\dfrac{1}{3}\cdot15\cdot\left|a\right|=5\left|a\right|\)

13 tháng 7 2018

b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)

\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)

\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)

\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)

\(VT=0=VP\)

21 tháng 1 2018

Ta có: \(B=\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}+\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\)

\(\Leftrightarrow B=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}+\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)

\(\Leftrightarrow B=\sqrt{x}-\sqrt{y}+\sqrt{x}+\sqrt{y}\)

\(\Leftrightarrow B=2\sqrt{x}\)

1 tháng 8 2018

\(a,\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{x+3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(\Rightarrow\sqrt{x}+3\)

\(b,\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{4y+7\sqrt{y}-4\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\sqrt{y}.\left(4\sqrt{y}\right)-\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\left(4\sqrt{y}+7\right).\left(\sqrt{y}-1\right)}{4\sqrt{y}+7}\)

\(\Rightarrow\sqrt{y}-1\)

\(c,\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

\(\Leftrightarrow\dfrac{\sqrt{xy}.\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)

\(\Rightarrow\sqrt{xy}\)

1 tháng 8 2018

\(d,\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{x+\sqrt{x}-4\sqrt{x}-4}{x+3\sqrt{x}-4\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(x+3\right)-4\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-4\right)}\)

\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

\(\Rightarrow\dfrac{x-2\sqrt{x}-3}{x-9}\)

\(e,\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{4}}\)

\(\Leftrightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+2}\)

\(\Rightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{3}\)

Bài 2: 

a: ĐKXĐ: a>0 và b>0

b: \(P=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}=\sqrt{a}-\sqrt{b}\)

c: Khi a=4 và b=1 thì P=2-1=1

6 tháng 11 2018

a) \(\sqrt{13^2-12^2}=\sqrt{\left(13-12\right)\left(13+12\right)}\)

\(=\sqrt{1.25}=5\)

b)\(\sqrt{4}\sqrt{36}-\sqrt{25}=\sqrt{2^2}\sqrt{6^2}-\sqrt{5^2}\)

\(=2.6-5=7\)

\(\sqrt{2x-1}\) xác định \(\Leftrightarrow2x-1\ge0\Leftrightarrow2x\ge1\)

\(\Leftrightarrow x\ge\dfrac{1}{2}\)

vậy với \(x\ge\dfrac{1}{2}\) thì \(\sqrt{2x-1}\) xác định

17 tháng 11 2022

Bài 3:

a: BC=10cm

Xét ΔABC vuông tại A có sin C=AB/BC=3/5

nên góc C=37 độ

=>góc B=53 độ

b: AB*cosB+AC*cosC

=AB*AB/BC+AC*AC/BC

=AB^2/BC+AC^2/BC

=BC^2/BC

=BC