Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
\(=x^{n-1}x+x^{n-1}y-x^{n-1}y-y^{n-1}y\)
\(=x^n-y^n\)
b) \(6x^n\left(x^2-1\right)+2x^3\left(3x^{n+1}+1\right)\)
\(=6x^nx^2-6x^n+2x^33x^{n+1}+2x^3\)
\(=6x^{n+2}-6x^n+6x^{3+n+1}+2x^3\)
\(=6x^{n+2}-6x^n+6x^{n+4}+2x^3\)
Đề có sai ko vậy bạn ???
a) Ta có: \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
\(=x^n+x^{n-1}\cdot y-x^{n-1}\cdot y-y\cdot y^{n-1}\)
\(=x^n-y^n\)
A=5; B=3; C=24 không phụ thuộc x; câu D thì mong bạn xem lại đề
\(A=\left(x^3+x^2+x\right)-\left(x^3+x^2\right)-x+5\)5
\(A=x^3+x^2+x-x^3-x^2-x+5\)
=> A=5
=> A luôn = 5 với mọi x => A không phụ thuộc vào x
\(B=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)
\(B=\left(2x^2+x\right)-\left(x^3+2x^2\right)+x^3-x+3\)
\(B=2x^2+x-x^3-2x^2+x^3-x+3\)
=> B= 3
=> B luôn =3 với mọi x => B không phụ thuộc vào x
\(C=4\left(6-x\right)+x^2\left(2+3x\right)-x\left(5x-4\right)+3x^2\left(1-x\right)\)
\(C=24-4x+2x^2+3x^3-5x^2+4x+3x^2-3x^3\)
C=24
=> C=24 với mọi x => C không phụ thuộc vào x
Câu D kí tự cuối có vẻ bạn gõ sai nên mình không làm được, sorry nhiều
A = x(x2 + x + 1) - x2(x + 1) - x + 5
A = x.x2 + x.x + x.1 + (-x2).x + (-x2).1 - x + 5
A = x3 + x2 + x - x3 - x2 - x + 5
A = (x3 - x3) + (x2 - x2) + (x - x) + 5
A = 0 + 0 + 0 + 5
A = 5
Vậy: Biểu thức không phụ thuộc giá trị của biến.
B = x(2x + 1) - x2(x + 2) + x3 - x + 3
B = x.2x + x.1 + (-x2).x + (-x2).2 + x3 - x + 3
B = 2x2 + x - x3 - 2x2 + x3 - x + 3
B = (2x2 - 2x2) + (x - x) + (-x3 + x3) + 3
B = 0 + 0 + 0 + 3
B = 3
Vậy: Biểu thức không phụ thuộc giá trị của biến.
C = 4(6 - x) + x2(2 + 3x) - x(5x - 4) + 3x2(1 - x)
C = 4.6 + 4.(-x) + x2.2 + x2.3x + (-x).5x + (-x).(-4) + 3x2.1 + 3x2.(-x)
C = 24 - 4x + 2x2 + 3x3 - 5x2 + 4x + 3x2 - 3x3
C = 24 + (-4x + 4x) + (2x2 - 5x2 + 3x2) + (3x3 - 3x3)
C = 24 + 0 + 0 + 0
C = 24
Vậy: Biểu thức không phụ thuộc giá trị của biến.
D viết sai thì chịu
o: \(x^3-xy^2+x^2y-y^3\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)^2\)
p: \(a^3-ma-mb+b^3\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)-m\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2-m\right)\)
q: \(\left(3x+1\right)^3-\left(1-2x\right)^3\)
\(=\left(3x+1\right)^3+\left(2x-1\right)^3\)
\(=\left(3x+1+2x-1\right)\left[\left(3x+1\right)^2-\left(3x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\right]\)
\(=5x\left[9x^2+6x+1-6x^2+3x-2x+1+4x^2-4x+1\right]\)
\(=5x\left(7x^2+5x+3\right)\)
\(1.\text{ }\text{ }\text{ }\dfrac{\left(x^2+2\right)^2-4x^2}{y\left(x^2+2\right)-2xy-\left(x-1\right)^2-1}\\ =\dfrac{\left(x^2+2-2x\right)\left(x^2+2+2x\right)}{x^2y+2y-2xy-x^2+2x-1-1}\\ =\dfrac{\left(x^2+2-2x\right)\left(x^2+2+2x\right)}{\left(x^2y-x^2\right)-\left(2xy-2x\right)+\left(2y-2\right)}\\ =\dfrac{\left(x^2+2-2x\right)\left(x^2+2+2x\right)}{x^2\left(y-1\right)-2x\left(y-1\right)+2\left(y-1\right)}\\ =\dfrac{\left(x^2+2-2x\right)\left(x^2+2+2x\right)}{\left(x^2-2x+2\right)\left(y-1\right)}\\ =\dfrac{x^2+2x+2}{y-1}\)
\(2.\text{ }\text{ }\text{ }\text{ }\dfrac{x^2+5x+6}{x^2+3x+2}\\ =\dfrac{x^2+3x+2x+6}{x^2+2x+x+2}\\ =\dfrac{\left(x^2+3x\right)+\left(2x+6\right)}{\left(x^2+2x\right)+\left(x+2\right)}\\ =\dfrac{x\left(x+3\right)+2\left(x+3\right)}{x\left(x+2\right)+\left(x+2\right)}\\ =\dfrac{\left(x+2\right)\left(x+3\right)}{\left(x+2\right)\left(x+1\right)}\\ =\dfrac{x+3}{x+1}\)
\(3.\text{ }\text{ }\text{ }\dfrac{x^2+y^2-z^2-2zt+2xy-t^2}{x^2-y^2+z^2-2yt+2xz-t^2}\text{ ( Chữa đề ) }\\ =\dfrac{\left(x^2+2xy+y^2\right)-\left(z^2+2zt+t^2\right)}{\left(x^2+2xz+z^2\right)-\left(y^2+2yt+t^2\right)}\\ =\dfrac{\left(x+y\right)^2-\left(z+t\right)^2}{\left(x+z\right)^2-\left(y+t\right)^2}\\ =\dfrac{\left(x+y+z+t\right)\left(x+y-z-t\right)}{\left(x+z+y+t\right)\left(x+z-y-t\right)}\\ =\dfrac{x+y-z-t}{x+z-y-t}\)
\(4.\text{ }\text{ }\text{ }\dfrac{\left(n+1\right)!}{\left(n+1\right)!+\left(n+2\right)!}=\dfrac{\left(n+1\right)!}{\left(n+1\right)!\left(1+n+2\right)}=\dfrac{1}{n+3}\)
\(5.\text{ }\text{ }\text{ }\dfrac{x^2+5x+4}{x^2-1}\\ =\dfrac{x^2+x+4x+4}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{\left(x^2+x\right)+\left(4x+4\right)}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{x\left(x+1\right)+4\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{\left(x+1\right)\left(x+4\right)}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{x+4}{x-1}\)
\(6.\text{ }\text{ }\text{ }\dfrac{x^2-3x}{2x^2-7x+3}\\ =\dfrac{x\left(x-3\right)}{2x^2-6x-x+3}\\ =\dfrac{x\left(x-3\right)}{\left(2x^2-6x\right)-\left(x-3\right)}\\ =\dfrac{x\left(x-3\right)}{2x\left(x-3\right)-\left(x-3\right)}\\ =\dfrac{x\left(x-3\right)}{\left(2x-1\right)\left(x-3\right)}\\ =\dfrac{x}{2x-1}\)
a: \(=12x^{n+2}+4x^2-8x^{n+2}\)
\(=4x^{n+2}+4x^2\)
b: \(=2x^{2n}+4x^ny^n+2y^{2n}-4x^ny^n-2y^{2n}\)
\(=2x^{2n}\)
c: \(=\left(x^{3n}-y^{3n}\right)\left(x^{3n}+y^{3n}\right)\)
\(=x^{6n}-y^{6n}\)
d: \(=4^n\cdot4-3\cdot4^n=4^n\)
a) \(\left(3x^{n+1}-y^{n-1}\right)-3\left(x^{n+1}+5y^{n-1}\right)-4\left(x^{n+1}+2y^{n-1}\right)\)
\(=3x^{n+1}-y^{n-1}-3x^{n+1}-15y^{n-1}+4x^{n+1}+8y^{n-1}\)
\(=-8y^{n-1}+4x^{n+1}\)
b) \(\left(\dfrac{3}{4}x^{n+1}-\dfrac{1}{2}y^n\right)\cdot2xy-\left(\dfrac{2}{3}x^{n+1}-\dfrac{5}{6}y^n\right)\cdot7xy\)
\(=\dfrac{3}{2}x^{n+2}y-xy^{n+1}+\left(-\dfrac{2}{3}x^{n+1}-\dfrac{5}{6}y^n\right)\cdot7xy\)
\(=\dfrac{3}{2}x^{n+2}y-xy^{n+1}-\dfrac{14}{3}x^{n+2}y+\dfrac{35}{6}xy^{n+1}\)
\(=-\dfrac{19}{6}x^{n+2}y+\dfrac{29}{6}xy^{n+1}\)
a)\(\left(3x^{n+1}-y^{n-1}\right)-3\left(x^{n+1}+5y^{n-1}\right)+4\left(x^{n+1}+2y^{n-1}\right)\)
\(=3x^{n+1}-y^{n-1}-3x^{n+1}-15y^{n-1}+4x^{n+1}+8y^{n-1}\)
\(=4x^{n+1}-8y^{n-1}\) \(\left(=4\left(x^{n+1}-2y^{n-1}\right)\right)\)
1/
\(\dfrac{\left(x-y\right)^3-3xy\left(x+y\right)+y^3}{x-6y}\)
\(=\dfrac{x^3-3x^2y+3xy^2-y^3-3x^2y-3xy^2+y^3}{x-6y}\)
\(=\dfrac{x^3-6x^2y}{x-6y}\)
\(=\dfrac{x^2\left(x-6y\right)}{x-6y}\)
\(=x^2\)
\(2\)/
\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(=\dfrac{\left(x-y+z^{ }\right)^2}{\left(x-y\right)^2-z^2}\)
\(=\dfrac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}\)
\(=\dfrac{x-y+z}{x-y-z}\)
3/
\(\dfrac{\left(n+1\right)!}{n!\left(n+2\right)}\)
\(=\dfrac{n!\left(n+1\right)}{n!\left(n+2\right)}\)
\(=\dfrac{n+1}{n+2}\)
4/
\(\dfrac{n!}{\left(n+1\right)!-n!}\)
\(=\dfrac{n!}{n!\left(n+1\right)-n!}\)
\(=\dfrac{n!}{n!\left[\left(n+1\right)-1\right]}\)
\(=\dfrac{n!}{n!.n}\)
\(=\dfrac{1}{n}\)
5/
\(\dfrac{\left(n+1\right)!-\left(n+2\right)!}{\left(n+1\right)!+\left(n+2\right)!}\)
\(=\dfrac{\left(n+1\right)!-\left(n+1\right)!\left(n+2\right)}{\left(n+1\right)!+\left(n+1\right)!\left(n+2\right)}\)
\(=\dfrac{\left(n+1\right)!\left(-n-1\right)}{\left(n+1\right)!\left(n+3\right)}\)
\(=\dfrac{-n-1}{n+3}\)