Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/\(\sqrt{54}=3\sqrt{6}\)
b/\(\sqrt{50a}=\sqrt{50}.\sqrt{a}=5\sqrt{2}.\sqrt{a}\)
c/ \(\sqrt{5\left(\sqrt{3}\right)^2=}\sqrt{5.3}=\sqrt{15}\)
a) \(\sqrt{54}=\sqrt{9.6}=\sqrt{9}.\sqrt{6}=3\sqrt{6}\)
b) \(\sqrt{50a}=\sqrt{25.2a}=\sqrt{5^2.2a}=5\sqrt{2a}\)
\(\sqrt{12}+\sqrt{27}-\sqrt{108}-\dfrac{1}{4}\sqrt{192}\)
\(=\sqrt{2^2.3}+\sqrt{3^2.3}-\sqrt{6^2.3}-\dfrac{1}{4}\sqrt{8^2.3}\)
\(=2\sqrt{3}+3\sqrt{3}-6\sqrt{3}-\dfrac{1}{4}.8\sqrt{3}=-3\sqrt{3}\)
b: \(x-2\sqrt{xy}+y=\left(\sqrt{x}-\sqrt{y}\right)^2\)
\(a,=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=\sqrt{2}\\ b,=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=-\sqrt{5}\\ c,=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{2}\)
, \(A=\frac{\sqrt{7}-5}{2}-\frac{6-2\sqrt{7}}{4}+\frac{6}{\sqrt{7}-2}-\frac{5}{4+\sqrt{7}}\)
\(=\frac{2\sqrt{7}-10-6+2\sqrt{7}}{4}+\frac{6\left(\sqrt{7}+2\right)}{3}-\frac{5\left(4-\sqrt{7}\right)}{9}\)
\(=\frac{-16+4\sqrt{7}}{4}+\frac{18\sqrt{7}+36-20+5\sqrt{7}}{9}=-4+\sqrt{7}+\frac{23\sqrt{7}+16}{9}\)
b,\(B=\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}=\frac{2\left(\sqrt{6}+2\right)+2\left(\sqrt{6}-2\right)}{2}+\frac{5\sqrt{6}}{6}\)
\(=\frac{12\sqrt{6}+5\sqrt{6}}{6}=\frac{17\sqrt{6}}{6}\)
a, P = 7 + 2 - 51 + 14 2 = 7 + 2 - 7 + 2 = 0
b, Q = 2 3 + 1 - 1 3 - 2 + 6 3 + 3
= 2 3 - 1 2 + 3 + 2 + 6 3 - 3 6
= 4 + 3
a) \(A=\sqrt{18}.\sqrt{2}-\sqrt{48}:\sqrt{3}=\sqrt{18.2}-\sqrt{48:3}\)
\(=\sqrt{36}-\sqrt{16}=6-4=2\)
b) \(B=\dfrac{8}{\sqrt{5}-1}+\dfrac{8}{\sqrt{5}+1}=\dfrac{8\sqrt{5}+8+8\sqrt{5}-8}{\left(\sqrt{5}-1\right).\left(\sqrt{5}+1\right)}=\dfrac{16\sqrt{5}}{4}=4\sqrt{5}\)
\(a,=\dfrac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}=-\sqrt{a}\\ b,=\dfrac{\sqrt{p}\left(\sqrt{p}-2\right)}{\sqrt{p}-2}=\sqrt{p}\)
a: \(=20\sqrt{3}-12\sqrt{3}-2\sqrt{57}+6\sqrt{3}=14\sqrt{3}-2\sqrt{57}\)
b: \(=4\sqrt{6}-6\sqrt{6}+3\sqrt{6}-5\sqrt{6}=-4\sqrt{6}\)