K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2018

\(C=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Rightarrow2C=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Rightarrow2C-C=1-\frac{1}{2^{100}}\)

\(\Rightarrow C=1-\frac{1}{2^{99}}\)

7 tháng 9 2018

\(C=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\Rightarrow2C=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Rightarrow2C-C=1-\frac{1}{2^{100}}\Rightarrow C=1-\frac{1}{2^{100}}\)

#Harry#Kasama#

4 tháng 12 2014

 A= 12+22+32+42+.....+992+1002

A =1.(2-1)+2.(3-1)+3.(4-1)+....+99.(100-1)+100.(101-1)

=1.2-1.1+2.3-1.2+3.4-1.3+...+99.100-1.99+100.101-1.100

=(1.2+2.3+3.4+...+99.100+100.101)-(1+2+3+...+100)

A= [1.2.3+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99) ] /3 + [(100+1).100 /2]

     ( Ở đây là cái tổng ở trên nhân 3 nên cuối mới chia 3)

=[1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+100.101.102-99.10.101]/3 + 5050

=100.101.102/3 + 5050

=348450

24 tháng 11 2016

348450

7 tháng 1 2016

A=(2101-2)/3

B=(3101+1)/4

24 tháng 6 2015

A=2100-299+298-297+.....+22-2

=>2A=2101-2100+299-298+.....+23-22

=>2A+A=2101-2100+299-298+.....+23-22+2100-299+298-297+....+22-2

=>3A=2201-2

=>A=\(\frac{2^{201}-2}{3}\)

B=3100-399+398-397+....+32-3+1

=>3B=3101-3100+399-398+...+33-32+3

=>3B+B=3101-3100+399-398+...+33-32+3+3100-399+398-397+....+32-3+1

=>4B=3101+1

=>B=\(\frac{3^{101}+1}{4}\)

24 tháng 6 2015

Câu a : Đặt 2A = 2^101 - 2^100 + 2^99 - 2^98 +...+ 2^3 - 2^2

=> 2A - A = 2^101 - 2^100 + 2^99 - 2^98 +...+ 2^3 - 2^2 - ( 2^100 - 2^99 + 2^98 - 2^97 +...+ 2^2 - 2)

=> A = 2^101 - 2^100 + 2^99 - 2^98 +...+ 2^3 - 2^2 - 2^100  + 2^99 - 2^98 + 2^97 -...- 2^2 + 2

=> A= = 2^101 -2(2^100 + 2^98 + 2^96 +...+ 2^2) + 2(2^99 + 2^97 + 2^95 +...+ 2^3) +2

Câu b : Làm tương tự như trên

BẤM ĐÚNG CHO MÌNH NHA

29 tháng 9 2017

3A=31+32+33+34+....+399+3100+3101

3A=(1+31+32+33+34+....+399+3100)+3101-1

3A=A+3101-1

=> \(A=\frac{3^{101}-1}{2}\)

3S= 3+2.32+3.33+...+101.3101

<=> 2S= 101.3101-(3100+399+398+....+3)-1            (1)

Ta có 

A=3100+399+...+3

<=> 3A=3101+3100+...+32

<=> A=\(\frac{3^{101^{ }}-3}{2}\)(2)

Thay (2) vào (1) ta có

S=        \(\frac{101.3^{101}-\frac{3^{101}-3}{2}-1}{2}\)

<=> S=\(\frac{3^{101}.201-1}{2}.\frac{1}{2}\)=\(\frac{3^{101}.201-1}{4}\)

Mik nghĩ vậy k bt đúng k

M = \(2^{100-}2^{99}+2^{98}-...+2^2-2\)

\(2M=2^{101}-2^{100}+2^{99}-2^{98}+2^{97}+...+2^3-2^2\)

\(2M+M=2^{101}-2\)

\(M=\frac{2^{101}-2}{3}\)

N=\(3^{100}-3^{^{ }99}+3^{98}-3^{97}+...+3^2-3+1\)

\(3N=3^{101}-3^{100}+3^{99}-3^{98}+3^{97}+...+3^3-3^2+3\)

3N+N= 4N = \(3^{101}+1\)

N=\(\frac{3^{101}+1}{4}\)

12 tháng 10 2016

giải câu 3