Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(\frac{2+\sqrt{a}}{\left(\sqrt{a}+1\right)^2}-\frac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\frac{a\left(\sqrt{a}+1\right)-\left(\sqrt{a}+1\right)}{a}\)
\(=\frac{\left(2+\sqrt{a}\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)
\(=\frac{2\sqrt{a}-2+a-\sqrt{a}-a-\sqrt{a}+2\sqrt{a}+2}{\left(\sqrt{a}+1\right)\left(a-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)
\(=\frac{2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(a-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)
\(=\frac{2\sqrt{a}\left(\sqrt{a-1}\right)}{a\left(\sqrt{a}+1\right)}=\frac{2\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\)
\(N=\left(\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}\)
\(=\left(\frac{a+1+2\sqrt{a}-a-1+2\sqrt{a}}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}\)
\(=\left(\frac{4\sqrt{a}}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}=4\sqrt{a}\left(\frac{1}{a-1}+1\right)\cdot\frac{a-1}{\sqrt{a}}=4\cdot\left(a-1\right)\left(\frac{1}{a-1}+1\right)\)
\(=4\cdot\left(a-1\right)\)
vừa tham khảo cách làm vừa check lại hộ tớ với nhé :33
\(B=\left(\frac{1}{1-\sqrt{a}}-\frac{1}{1+\sqrt{a}}\right)\left(\frac{1}{\sqrt{a}}+1\right)\)
\(=\left(\frac{1+\sqrt{a}}{1-a}-\frac{1-\sqrt{a}}{1-a}\right)\left(\frac{\sqrt{a}}{a}+\frac{a}{a}\right)\)
\(=\frac{1+\sqrt{a}-1+\sqrt{a}}{1-a}.\frac{\sqrt{a}+a}{a}\)
\(=\frac{2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}.\frac{\sqrt{a}.\left(1+\sqrt{a}\right)}{a}\)
\(=\frac{2}{1-\sqrt{a}}\)
Bài 1:
a) \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
b) \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)
\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)
c) ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)
\(=1-a+a=1\)
\(a,A=\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}\)
\(=\sqrt{\left(\sqrt{5}^2+2\sqrt{5}+2\sqrt{2}\cdot\sqrt{5}\right)+\sqrt{2}^2+2\sqrt{2}\cdot1+1^2}\)
\(=\sqrt{\sqrt{5}^2+2\cdot\sqrt{5}\left(\sqrt{2}+1\right)+\left(\sqrt{2}+1\right)^2}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{2}+1\right)^2}\)
\(=\sqrt{5}+\sqrt{2}+1\)
\(b,B=\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
\(=\left(\frac{3\cdot\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}{\sqrt{6}+1}+\frac{2\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}{\sqrt{6}-2}-\frac{4\left(3-\sqrt{6}\right)\left(3+\sqrt{6}\right)}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
\(=\left[3\cdot\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-4\left(3+\sqrt{6}\right)\right]\left(\sqrt{6}+11\right)\)
\(=\left(\sqrt{6}+11\right)\left(\sqrt{6}-11\right)=-115\)
\(ĐKXĐ:a\ge0\)
\(A=\left(\frac{2\sqrt{a}}{a\sqrt{a}+a+\sqrt{a}+1}+\frac{1}{\sqrt{a}+1}\right):\left(1+\frac{\sqrt{a}}{a+1}\right)\)
\(\Leftrightarrow A=\left(\frac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}+1\right)}+\frac{1}{\sqrt{a}+1}\right):\frac{a+\sqrt{a}+1}{a+1}\)
\(\Leftrightarrow A=\frac{2\sqrt{a}+a+1}{\left(a+1\right)\left(\sqrt{a}+1\right)}\cdot\frac{a+1}{a+\sqrt{a}+1}\)
\(\Leftrightarrow A=\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(a+\sqrt{a}+1\right)}\)
\(\Leftrightarrow A=\frac{\sqrt{a}+1}{a+\sqrt{a}+1}\)
\(ĐKXĐ:a>1\)
\(P=\left(\frac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}\right)\cdot\frac{\sqrt{a}+1}{\sqrt{a}}\)
\(\Leftrightarrow P=\left(\frac{\sqrt{a}+2}{\left(\sqrt{a}+1\right)^2}-\frac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\cdot\frac{\sqrt{a}+1}{\sqrt{a}}\)
\(\Leftrightarrow P=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\cdot\frac{\sqrt{a}+1}{\sqrt{a}}\)
\(\Leftrightarrow P=\frac{a+\sqrt{a}-2-a+\sqrt{a}+2}{\sqrt{a}\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(\Leftrightarrow P=\frac{2\sqrt{a}}{\sqrt{a}\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(\Leftrightarrow P=\frac{2}{a-1}\)
\(ĐKXĐ:\hept{\begin{cases}a>0\\a\ne1\end{cases}}\)
Ta có :
\(P=\left(\frac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}\right).\frac{\sqrt{a}+1}{\sqrt{a}}\)
\(=\left(\frac{\sqrt{a}+2}{\left(\sqrt{a}+1\right)^2}-\frac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right).\frac{\sqrt{a}+1}{\sqrt{a}}\)
\(=\left(\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\right).\frac{\sqrt{a}+1}{\sqrt{a}}\)
\(=\left(\frac{\left(a+\sqrt{a}-2\right)-\left(a-\sqrt{a}-2\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\right).\frac{\sqrt{a}+1}{\sqrt{a}}\)
\(=\frac{2\sqrt{a}}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}.\frac{\sqrt{a}+1}{\sqrt{a}}\)
\(=\frac{2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{2}{a-1}\)
Vậy \(P=\frac{2}{a-1}\left(a>0;a\ne1\right)\)
ĐK a < 0 hoặc a = 1
\(=\sqrt{1-a}+\sqrt{a\left(a-1\right)}-\sqrt{\frac{a^2\left(a-1\right)}{a}}=\sqrt{1-a}+\sqrt{a\left(a-1\right)}-\sqrt{a\left(a-1\right)}=\sqrt{1-a}\)
Đk \(1-a\ge0;a\left(1-a\right)\ge0;\frac{a}{a-1}\ge0\)
=> \(a\le1;a\ge1ora\le0;a\ge1ora<0\)
kết hợ ba đk => a<= 0 hoặc a = 1