\(\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2016

\(A^2=\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}\)

\(\Leftrightarrow A^2=\frac{\left(a+1\right)^2+a^2\left(a^2+2a+2\right)}{a^2\left(a+1\right)^2}\)

\(\Leftrightarrow A^2=\frac{\left(a+1\right)^2+2\left(a+1\right)a^2+a^4}{a^2\left(a+1\right)^2}\)

\(\Leftrightarrow A^2=\frac{\left(a+1+a^2\right)^2}{a^2\left(a+1\right)^2}\)

5 tháng 12 2016

\(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}=\sqrt{\left(1+\frac{1}{a}\right)^2+\frac{1}{\left(a+1\right)^2}-\frac{2}{a}}\)

\(=\sqrt{\left(\frac{a+1}{a}\right)^2+\frac{1}{\left(a+1\right)^2}-\frac{2\left(a+1\right)}{a}\cdot\frac{1}{a+1}}\)

\(=\sqrt{\left(\frac{a+1}{a}-\frac{1}{a+1}\right)^2}=\left|\frac{1}{a}+1-\frac{1}{a+b}\right|\)

1 tháng 11 2020

\(M=\left(\frac{2+\sqrt{a}}{\left(\sqrt{a}+1\right)^2}-\frac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\frac{a\left(\sqrt{a}+1\right)-\left(\sqrt{a}+1\right)}{a}\)

\(=\frac{\left(2+\sqrt{a}\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)

\(=\frac{2\sqrt{a}-2+a-\sqrt{a}-a-\sqrt{a}+2\sqrt{a}+2}{\left(\sqrt{a}+1\right)\left(a-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)

\(=\frac{2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(a-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)

\(=\frac{2\sqrt{a}\left(\sqrt{a-1}\right)}{a\left(\sqrt{a}+1\right)}=\frac{2\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\)

1 tháng 11 2020

\(N=\left(\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}\)

\(=\left(\frac{a+1+2\sqrt{a}-a-1+2\sqrt{a}}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}\)

\(=\left(\frac{4\sqrt{a}}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}=4\sqrt{a}\left(\frac{1}{a-1}+1\right)\cdot\frac{a-1}{\sqrt{a}}=4\cdot\left(a-1\right)\left(\frac{1}{a-1}+1\right)\)

\(=4\cdot\left(a-1\right)\)

vừa tham khảo cách làm vừa check lại hộ tớ với nhé :33 

19 tháng 9 2015

\(=\frac{1+a}{2\sqrt{a}-a}.\frac{2\sqrt{a}-a}{-\left(1+\sqrt{a}\right)}=\frac{-\left(1+a\right)}{1+\sqrt{a}}\)

11 tháng 7 2018

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

23 tháng 7 2018

a)\(P=\left(\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}-1}-1\right)ĐK:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}.\)

\(=\left(\frac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\left(\frac{\sqrt{x}-1}{\sqrt{x}-\sqrt{x}+1}\right)\)

=\(\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}+1}{\sqrt{x}+1}\)

b)P=3/2  <=>\(\frac{2\sqrt{x}+1}{\sqrt{x}+1}=\frac{3}{2}\Leftrightarrow2\sqrt{x}+1=\frac{3}{2}\sqrt{x}+\frac{3}{2}.\)

\(\Leftrightarrow\frac{1}{2}\sqrt{x}=\frac{1}{2}\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

Với x=1 thoả nãm yêu cầu

6 tháng 9 2015

\(B=\left(\frac{1}{1-\sqrt{a}}-\frac{1}{1+\sqrt{a}}\right)\left(\frac{1}{\sqrt{a}}+1\right)\)

\(=\left(\frac{1+\sqrt{a}}{1-a}-\frac{1-\sqrt{a}}{1-a}\right)\left(\frac{\sqrt{a}}{a}+\frac{a}{a}\right)\)

\(=\frac{1+\sqrt{a}-1+\sqrt{a}}{1-a}.\frac{\sqrt{a}+a}{a}\)

\(=\frac{2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}.\frac{\sqrt{a}.\left(1+\sqrt{a}\right)}{a}\)

\(=\frac{2}{1-\sqrt{a}}\)