\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2016

xn-1(x+y)-y(xn-1+yn-1)

=x.xn-1+y.xn-1-y.xn-1-y.yn-1

=xn-yn

Vậy xn-1(x+y)-y(xn-1+yn-1)=xn-yn

18 tháng 8 2016

xn-1(x + y) - y(xn-1 + yn-1)

= xn-1+1 + xn-1y - yxn-1 - y1+n-1

= xn - yn

mk chỉ là học sinh lớp 7 nên làm vậy thui k biết có đúng ko

19 tháng 4 2017

a) x (x - y) + y (x - y) = x2 – xy+ yx – y2

= x2 – xy+ xy – y2

= x2 – y2

b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn

= xn + xn – 1y - xn – 1y - yn

= xn – yn.



Bài giải:

a) x (x - y) + y (x - y) = x2 – xy+ yx – y2

= x2 – xy+ xy – y2

= x2 – y2

b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn

= xn + xn – 1y - xn – 1y - yn

= xn – yn.



21 tháng 8 2016

x^n-1(x+y)-y(x^n-1+y^n-1)                                 (Mình cách xa từng cái một cho bạn nhìn rõ nha)

=x^n-1+1       +         xy^n-1     -     xy^n-1      -      y^n-1+1

=x^n-1+1           -             y^n-1+1

=x^n  -  y^n

(Cái dòng thứ hai dưới cái đề bài í là nhân hai số có cùng cơ số bạn nhớ chứ)

21 tháng 8 2016

\(=x^{2^{n-1}}+x^{n-1}y-yx^{n-1}+y^{2^{n-1}}\)

\(=x^{2^{n-1}}+y^{2^{n-1}}\)

15 tháng 8 2016

\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)=x^n+y.x^{n-1}-y.x^{n-1}-y^n=x^n-y^n\)

15 tháng 8 2016

\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)

\(=x^{n-1}x+x^{n-1}y-yx^{n-1}-y^{n-1}y\)

\(=x^n-y^n\)

19 tháng 8 2015

a) \(x\left(x-y\right)+y\left(x-y\right)\)

\(=x^2-xy+xy-y^2\)

\(=x^2-y^2\)

b) \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)

\(=x^n+x^{n-1}y-x^{n-1}y-y^n\)

\(=x^n-y^n\)

17 tháng 8 2015

\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)

\(=x^n+x^{n-1}y-x^{n-1}y-y^n=x^n-y^n\)

23 tháng 7 2020

a) \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)

\(=x^{n-1}x+x^{n-1}y-x^{n-1}y-y^{n-1}y\)

\(=x^n-y^n\)

b) \(6x^n\left(x^2-1\right)+2x^3\left(3x^{n+1}+1\right)\)

\(=6x^nx^2-6x^n+2x^33x^{n+1}+2x^3\)

\(=6x^{n+2}-6x^n+6x^{3+n+1}+2x^3\)

\(=6x^{n+2}-6x^n+6x^{n+4}+2x^3\)

Đề có sai ko vậy bạn ???

a) Ta có: \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)

\(=x^n+x^{n-1}\cdot y-x^{n-1}\cdot y-y\cdot y^{n-1}\)

\(=x^n-y^n\)

12 tháng 8 2020

quy đồng mẫu thức ta được

\(\frac{yz\left(z-y\right)+xz\left(x-z\right)+xy\left(y-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)\(=\frac{yz\left(z-y\right)+xz\left(x-z\right)-xy\left[\left(z-y\right)+\left(x-z\right)\right]}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{y\left(z-y\right)\left(z-x\right)+x\left(x-z\right)\left(z-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{\left(z-y\right)\left(z-x\right)\left(y-x\right)}{xyz\left(z-y\right)\left(z-x\right)\left(y-x\right)}=\frac{1}{xyz}\)