Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng \(\sqrt{a^2}=\left|a\right|\forall a\) ta có:
\(B=\sqrt{\left(x+1\right)^2}-\sqrt{x^2}\)
\(B=\left|x+1\right|-\left|x\right|\)
Xét 2 trường hợp
- Th1: \(-1\le x< 0\) thì |x + 1| = x - 1; |x| = -x, ta có:
B = (x + 1) - (-x)
B = x + 1 + x
B = 2x + 1
- Th2: \(x\ge0\) thì |x + 1| = x + 1; |x| = x, ta có:
B = (x + 1) - x
B = 1
Vì x≥−1x≥−1 nên x+1≥0x+1≥0. Do đó theo định nghĩa căn bậc hai ta có: √(x+1)2=x+1(x+1)2=x+1
Tương tự theo định nghĩa căn bậc hai, x và - x là hai giá trị căn bậc hai của x2x2
Nhưng √x2x2 là giá trị không âm.
Nếu x≥0x≥0 thì √x2=xx2=x. Khi đó B=x+1−x=1B=x+1−x=1
Nếu x < 0 thì - x > 0 và √x2=xx2=x. Khi đó B=x+1+x=2x+1B=x+1+x=2x+1.
4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)
\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)
Tìm z thì dễ rồi
\(a,\left(3x+5\right)^2+\left(3x-5\right)^2-\left(3x+2\right)\left(3x-2\right)=9x^2+30x+25+9x^2-30x+25-9x^2+4=9x^2+54\)
\(b,BT=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x=x^3-16x^2+25x\)
\(c,BT=\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2=\left(x+y-z-x-y\right)^2=z^2\)