\(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2016

Đặt: \(P=\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\) 

\(P^2=\left(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\right)^2\)

\(P^2=94-42\sqrt{5}-2\sqrt{94-42\sqrt{5}}.\sqrt{94+42\sqrt{5}}+94+42\sqrt{5}\) 

\(P^2=188-2\sqrt{\left(94-42\sqrt{5}\right)\left(94+42\sqrt{5}\right)}\) 

\(P^2=188-2\sqrt{94^2+3948\sqrt{5}-3948\sqrt{5}-8820}\) 

\(P^2=188-2\sqrt{8836-8820}\) 

\(P^2=188-2\sqrt{16}\) 

\(P^2=188-8\) 

\(P^2=180\) 

\(P=\orbr{\begin{cases}6\sqrt{5}\\-6\sqrt{5}\end{cases}}\)  .

Mà theo bài ra: \(\sqrt{94-42\sqrt{5}}< \sqrt{94+42\sqrt{5}}\)

\(\Rightarrow\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}< 0\)

\(\Rightarrow P=-6\sqrt{5}\)
 

9 tháng 9 2016

Làm gì phức tạp thế

94 - 42\(\sqrt{5}\)= 49 - 2×7×3×\(\sqrt{5}\)+ 45 = (7 - \(3\sqrt{5}\))2

Tương tự 94 + 42\(\sqrt{5}\) = (7 + \(3\sqrt{5}\))2

Từ đó suy ra đáp số là 6\(\sqrt{5}\)

28 tháng 5 2016

\(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}=\sqrt{\left(7-3\sqrt{5}\right)^2}-\sqrt{\left(7+3\sqrt{5}\right)^2}\)

\(=7-3\sqrt{5}-7-3\sqrt{5}=-6\sqrt{5}\)

28 tháng 5 2016

=0 nha bạn

17 tháng 6 2019

\(a,\sqrt{33+20\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{8+2.2\sqrt{2}.5+25}-\sqrt{2-2.\sqrt{2}.3+9}\)

\(=\sqrt{\left[2\sqrt{2}+5\right]^2}-\sqrt{\left[\sqrt{2}-3\right]^2}\)

\(=2\sqrt{2}+5-\left(3-\sqrt{2}\right)\)

\(=2+\sqrt{2}\)

chúc bn học tốt

17 tháng 6 2019

a) \(\sqrt{\left(2\sqrt{2}+5\right)^2}\) \(-\) \(\sqrt{\left(3-\sqrt{2}\right)^2}\)\(|2\sqrt{2}+5|\)\(-\)\(|3-\sqrt{2}|\)

\(=\)\(2\sqrt{2}+5-3+\sqrt{2}=2+3\sqrt{2}\)

b)\(\sqrt{\left(7-3\sqrt{5}\right)^2}-\sqrt{\left(7+3\sqrt{5}\right)^2}=7-3\sqrt{5}-7-3\sqrt{5}=-6\sqrt{5}\)

17 tháng 6 2019

a/ \(=\sqrt{\left(5+2\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=5+2\sqrt{2}-3+\sqrt{2}=2+3\sqrt{2}\)

b/ \(=\sqrt{\left(7-3\sqrt{5}\right)^2}-\sqrt{\left(7+3\sqrt{5}\right)}=7-3\sqrt{5}-7-3\sqrt{5}=-6\sqrt{5}\)

17 tháng 6 2019

a)

\(\sqrt{33+20\sqrt{2}}-\sqrt{11-6\sqrt{2}}\\ =\sqrt{33+2\sqrt{200}}-\sqrt{11-2\sqrt{18}}\\ =\sqrt{\sqrt{8^2}+2\sqrt{8}\sqrt{25}+5^2}-\sqrt{\sqrt{2^2}-2\sqrt{2}\sqrt{9}+3^2}\\ =\sqrt{\left(\sqrt{8}+5\right)^2}-\sqrt{\left(\sqrt{2}-3\right)^2}\\ =\left|\sqrt{8}+5\right|-\left|\sqrt{2}-3\right|\\ =\sqrt{8}+5-3+\sqrt{2}\\ =3\sqrt{2}+2\)

b)

\(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\\ =\sqrt{\left(7-\sqrt{45}\right)^2}-\sqrt{\left(7+\sqrt{45}\right)^2}\\ =\left|7-\sqrt{45}\right|-\left|7+\sqrt{45}\right|\\ =7-\sqrt{45}-7-\sqrt{45}\\ =-2\sqrt{45}\)

1 tháng 8 2018

\(a.\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}=\sqrt{49-2.7.3\sqrt{5}+45}-\sqrt{49+2.7.3\sqrt{5}+45}=7-3\sqrt{5}-7-3\sqrt{5}=-6\sqrt{5}\) \(b.\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\dfrac{\sqrt{7+2\sqrt{7}+1}-\sqrt{7-2\sqrt{7}+1}}{\sqrt{2}}=\dfrac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}=\sqrt{2}\) \(c.\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-\sqrt{12+2.2\sqrt{3}+1}}=\sqrt{3-2\sqrt{3}+1}=\sqrt{3}-1\)

1 tháng 8 2018

You are stupid, realy?

23 tháng 9 2017

a) đặt \(A=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

nhân cả hai vế với \(\sqrt{2}\), ta được:

\(\sqrt{2}A=\sqrt{2}\sqrt{4-\sqrt{7}}-\sqrt{2}\sqrt{4+\sqrt{7}}\)

\(=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(=\sqrt{\left(1-\sqrt{7}\right)^2}-\sqrt{\left(1+ \sqrt{7}\right)^2}\)

\(=\left|1-\sqrt{7}\right|-\left|1+\sqrt{7}\right|\)

\(=\sqrt{7}-1-\sqrt{7}-1\)

\(=-2\)

\(\Rightarrow A=-\frac{2}{\sqrt{2}}=-\sqrt{2}\)

12 tháng 5 2018

a) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}\)

\(=\frac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}\)

\(=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)

a) Ta có: \(\sqrt{11-2\sqrt{10}}\)

\(=\sqrt{10-2\cdot\sqrt{10}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{10}-1\right)^2}\)

\(=\left|\sqrt{10}-1\right|=\sqrt{10}-1\)

b) Ta có: \(\sqrt{9-2\sqrt{14}}\)

\(=\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{7}-\sqrt{2}\right|\)

\(=\sqrt{7}-\sqrt{2}\)

c) Ta có: \(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3+2\cdot\sqrt{3}\cdot1+1}+\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|\)

\(=\sqrt{3}+1+\sqrt{3}-1\)

\(=2\sqrt{3}\)

d) Ta có: \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}-\sqrt{5+2\cdot\sqrt{5}\cdot2+4}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)

\(=\left|\sqrt{5}-2\right|-\left|\sqrt{5}+2\right|\)

\(=\sqrt{5}-2-\left(\sqrt{5}+2\right)\)

\(=\sqrt{5}-2-\sqrt{5}-2\)

\(=-4\)

e) Ta có: \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

\(=\frac{\sqrt{2}\cdot\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{2}\cdot\left(\sqrt{4-\sqrt{7}}\right)-\sqrt{2}\cdot\left(\sqrt{4+\sqrt{7}}\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)

\(=\frac{\sqrt{7-2\cdot\sqrt{7}\cdot1+1}-\sqrt{7+2\cdot\sqrt{7}\cdot1+1}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|}{\sqrt{2}}\)

\(=\frac{\sqrt{7}-1-\left(\sqrt{7}+1\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}\)

\(=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)

g) Ta có: \(\sqrt{3}+\sqrt{11+6\sqrt{2}}+\sqrt{5+2\sqrt{6}}\)

\(=\sqrt{3}+\sqrt{9+2\cdot3\cdot\sqrt{2}+2}+\sqrt{2+2\cdot\sqrt{2}\cdot\sqrt{3}+3}\)

\(=\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}\)

\(=\sqrt{3}+\left|3+\sqrt{2}\right|+\left|\sqrt{2}+\sqrt{3}\right|\)

\(=\sqrt{3}+3+\sqrt{2}+\sqrt{2}+\sqrt{3}\)

\(=3+2\sqrt{3}+2\sqrt{2}\)

h) Ta có: \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\cdot\sqrt{3+2\cdot\sqrt{3}\cdot2+4}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\cdot\sqrt{\left(\sqrt{3}+2\right)^2}}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{48-10\cdot\left(\sqrt{3}+2\right)}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{48-10\sqrt{3}-20}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{25-2\cdot5\cdot\sqrt{3}+3}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{\left(5-\sqrt{3}\right)^2}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\left(5-\sqrt{3}\right)}\)

\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)

\(=\sqrt{25}=5\)

k) Ta có: \(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)

\(=\sqrt{49-2\cdot7\cdot\sqrt{45}+45}-\sqrt{49+2\cdot7\cdot\sqrt{45}+45}\)

\(=\sqrt{\left(7-\sqrt{45}\right)^2}-\sqrt{\left(7+\sqrt{45}\right)^2}\)

\(=\left|7-\sqrt{45}\right|-\left|7+\sqrt{45}\right|\)

\(=7-\sqrt{45}-\left(7+\sqrt{45}\right)\)

\(=7-\sqrt{45}-7-\sqrt{45}\)

\(=-2\sqrt{45}=-6\sqrt{5}\)

i) Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(\Leftrightarrow A^2=\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)^2\)

\(=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\cdot\left(4-\sqrt{10+2\sqrt{5}}\right)}\)

\(=8+2\cdot\sqrt{16-\left(10+2\sqrt{5}\right)}\)

\(=8+2\cdot\sqrt{6-2\sqrt{5}}\)

\(=8+2\cdot\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=8+2\cdot\left(\sqrt{5}-1\right)\)

\(=8+2\sqrt{5}-2\)

\(=6+2\sqrt{5}\)

\(=\left(\sqrt{5}+1\right)^2\)

\(\Leftrightarrow A=\sqrt{5}+1\)

15 tháng 9 2021

chịu thôi

4 tháng 7 2018

\(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}=\sqrt{49-2.7.3\sqrt{5}+45}-\sqrt{49+2.7.3\sqrt{5}+45}=7-3\sqrt{5}-7-3\sqrt{5}=-6\sqrt{5}\)

24 tháng 6 2019
https://i.imgur.com/VpoNhfV.jpg