\(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2020

Ép thành hằng đẳng thức trong căn

9 tháng 12 2020

Gợi ý.

\(7+4\sqrt{3}=2^2+2.2.\sqrt{3}+3=\left(2+\sqrt{3}\right)^2\)

\(7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\)

Tự làm.

9 tháng 6 2019

a) \(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)

\(A^2=\left(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\right)^2\)

\(A^2=3+\sqrt{5}+3-\sqrt{5}+2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)

\(A^2=6+2\sqrt{3^2-5}\)

\(A^2=6+4\)

\(A^2=10\)

\(\Rightarrow\orbr{\begin{cases}A=10\\A=-10\end{cases}}\)

Mà \(A>0\Rightarrow A=10\)

b) \(B=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

\(B^2=\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)^2\)

\(B^2=4-\sqrt{7}-2\sqrt{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}+4+\sqrt{7}\)

\(B^2=8-2\sqrt{4^2-7}\)

\(B^2=8-6\)

\(B^2=2\)

\(\Rightarrow\orbr{\begin{cases}B=2\\B=-2\end{cases}}\)

Mà \(B< 0\Rightarrow B=-2\)

9 tháng 6 2019

Cách khác :

b) \(4-\sqrt{7}=\frac{8-2\sqrt{7}}{2}=\frac{7-2\sqrt{7}+1}{2}=\left(\frac{\sqrt{7}-1}{\sqrt{2}}\right)^2\)

\(4+\sqrt{7}=\frac{8+2\sqrt{7}}{2}=\frac{7+2\sqrt{7}+1}{2}=\left(\frac{\sqrt{7}+1}{\sqrt{2}}\right)^2\)

do đó : \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}=\sqrt{\left(\frac{\sqrt{7}-1}{\sqrt{2}}\right)^2}-\sqrt{\left(\frac{\sqrt{7}+1}{\sqrt{2}}\right)^2}=\frac{\sqrt{7}-1}{\sqrt{2}}-\frac{\sqrt{7}+1}{\sqrt{2}}=-\sqrt{2}\)

tương tự câu a.

a) \(\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=\sqrt{4-3}=\sqrt{1}=1\)

b)

Đặt \(B=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(B^2=4+\sqrt{7}-2\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}+4-\sqrt{7}\)

\(=8-2\sqrt{16-7}=8-2\sqrt{9}=8-2.3=8-6=2\)

\(\Rightarrow B=\sqrt{2}\)

22 tháng 7 2016

a) Đặt A=\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

<=> \(\sqrt{2}\cdot A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\)=\(\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}\)

\(\sqrt{7}+1-\sqrt{7}+1=2\)

=> \(A=\frac{2}{\sqrt{2}}\sqrt{2}\)

b) Ta đặt \(B=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

=> \(B^2=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)

             =  \(8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{5-2\sqrt{5}+1}\)=\(8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\sqrt{5}-2=6+2\sqrt{5}\)

\(5+2\sqrt{5}+1=\left(\sqrt{5}+1\right)^2\)

=>  B=\(\sqrt{5}+1\)

c) Ta xét \(A=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}\)

=> \(\sqrt{2}\cdot A=\sqrt{8+2\sqrt{3}\cdot\sqrt{5}}+\sqrt{8-2\sqrt{3}\cdot\sqrt{5}}\)

                 =  \(\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

                =  \(\sqrt{3}+\sqrt{5}+\sqrt{5}-\sqrt{3}\)\(2\sqrt{5}\)

=> A=\(\sqrt{5}\)

Ta có : \(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)

\(A-\sqrt{6-2\sqrt{5}}\)

\(\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-\sqrt{5}+1\)=1

22 tháng 7 2016

Phần a) chỗ cuối viết thiếu dấu =.

Sẽ là A=\(\sqrt{2}\)nha

28 tháng 10 2020

a) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}\)

\(=\frac{\sqrt{2\left(4-\sqrt{7}\right)}-\sqrt{2\left(4+\sqrt{7}\right)}+2}{\sqrt{2}}\)

\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}+2}{\sqrt{2}}\)

\(=\frac{\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}+2}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}+2}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|+2}{\sqrt{2}}=\frac{\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)+2}{\sqrt{2}}\)

\(=\frac{\sqrt{7}-1-\sqrt{7}-1+2}{\sqrt{2}}=\frac{0}{\sqrt{2}}=0\)

b) \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}+3\sqrt{2}\)

\(=\frac{\sqrt{2\left(6+\sqrt{11}\right)}-\sqrt{2\left(6-\sqrt{11}\right)}+3.2}{\sqrt{2}}\)

\(=\frac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}+6}{\sqrt{2}}\)

\(=\frac{\sqrt{11+2\sqrt{11}+1}-\sqrt{11-2\sqrt{11}+1}+6}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{11}+1\right)^2}-\sqrt{\left(\sqrt{11}-1\right)^2}+6}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{11}+1\right|-\left|\sqrt{11}-1\right|+6}{\sqrt{2}}\)

\(=\frac{\left(\sqrt{11}+1\right)-\left(\sqrt{11}-1\right)+6}{\sqrt{2}}\)

\(=\frac{\sqrt{11}+1-\sqrt{11}+1+6}{\sqrt{2}}=\frac{8}{\sqrt{2}}=4\sqrt{2}\)

31 tháng 7 2019

mình nghĩ bài này sai đề, 

ĐÚng phải là\(\sqrt[3]{2+\sqrt{3}}\)

(   KHÔNG CHẮC NỮA   :D   )

1 tháng 8 2019

\(\text{sai đề chú ơi}\)

3 tháng 9 2019

\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(\sqrt{3}+2\right)^2}}}}\)

\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(\sqrt{3}+2\right)}}}\)

\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{3}-20}}}\)

\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)

\(\sqrt{4+\sqrt{5\left(\sqrt{3}+5-\sqrt{3}\right)}}\)

\(\sqrt{4+\sqrt{25}}\)

\(\sqrt{4+5}=3\)

28 tháng 6 2019

a. \(=\sqrt{2}.\left(\sqrt{7}+\sqrt{8}\right)\sqrt{5-\sqrt{3}\sqrt{7}}\)

\(=\left(\sqrt{7}+\sqrt{8}\right)\sqrt{3-2\sqrt{3}.\sqrt{7}+7}\)

\(=\left(\sqrt{7}+\sqrt{8}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)

\(=\left(\sqrt{7}+\sqrt{8}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

Rồi nhân ra. bạn làm tiếp nhé. Tuy nhiên minh nghĩ bạn bị nhầm đề. là \(\sqrt{6}\) chứ không phải căn 16

b. \(=\frac{5\left(\sqrt{21}+1\right)}{21-16}+\frac{\sqrt{3}.\sqrt{7}\left(\sqrt{3}-\sqrt{7}\right)}{-\left(\sqrt{3}-\sqrt{7}\right)}\)

\(=\sqrt{21}+4-\sqrt{21}=4\)

Mình coi lại r  \(\sqrt{16}\) nhé

25 tháng 6 2018

\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}.\)

\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{3+4+2\sqrt{12}}}}\)

\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(\sqrt{3}+\sqrt{4}\right)^2}}}\)

\(\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)

\(\sqrt{5\sqrt{3}+5\sqrt{25+3-2.\sqrt{25.3}}}\)

\(\sqrt{5\sqrt{3}+5\sqrt{\left(\sqrt{25}-\sqrt{3}\right)^2}}\)

\(\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)

\(\sqrt{25}=5\)

25 tháng 6 2018

cho mình hỏi tại sao  10\(\sqrt{\left(\sqrt{3}+\sqrt{4}\right)^2}\)lại bằng  10\(\sqrt{3}\)