\(\hept{\begin{cases}\sqrt{b}\\a-\sqrt{ab}\end{cases}}-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2021

\(=\left(\frac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\right)\left(a\sqrt{b}-b\sqrt{a}\right)\)

\(=\frac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)

=b-a

31 tháng 8 2021

Trả lời:

a, \(P=\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right):\left(\frac{1}{\sqrt{x}+1}-\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{2}{x-1}\right)\) \(\left(ĐK:x\ge0;x\ne1\right)\)

\(=\left[\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]:\left(\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}\right)\)

\(=\left[\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\left[\frac{\sqrt{x}-1}{x-1}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}+\frac{2}{x-1}\right]\)

\(=\frac{x+2\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)}{x-1}:\frac{\sqrt{x}-1-\sqrt{x}\left(\sqrt{x}+1\right)+2}{x-1}\)

\(=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{x-1}:\frac{\sqrt{x}-1-x-\sqrt{x}+2}{x-1}\)

\(=\frac{4\sqrt{x}}{x-1}:\frac{1-x}{x-1}=\frac{4\sqrt{x}}{x-1}\cdot\frac{x-1}{1-x}=\frac{4\sqrt{x}}{1-x}\)

\(A=\left(\frac{\sqrt{X}}{\sqrt{X}+1}+\frac{\sqrt{X}+1}{1-\sqrt{X}}+\frac{4\sqrt{X}+1}{X-1}\right)\left(\frac{X\sqrt{X}}{\sqrt{X}+1}-\sqrt{X}\right)\)

     \(=\left(\frac{\sqrt{X}-\sqrt{X}-1+4\sqrt{X}+1}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\right)\left(X-\sqrt{X}\right)\)

     \(=\frac{4\sqrt{X}}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}.\sqrt{X}\left(\sqrt{X}-1\right)\)

\(A=\frac{4X}{\sqrt{X}+1}\)

B) dễ rồi làm tiếp ik chỉ cần biến về \(\left(a+b\right)^2+hs\le hs\) là được

28 tháng 5 2019

Câu a  Bùi Vương chưa quy đồng thì phải

theo mình thì biến đổi cái phương trình đầu rồi dùng bđt để a=b

sau đó thay vào cái thứ 2 là được

17 tháng 7 2017

biến đổi cũng là vấn đề

biến đổi xong cũng khó

3 tháng 5 2019

1) a) \(\hept{\begin{cases}2x-y=5\\x+y=4\end{cases}}\)<=> \(\hept{\begin{cases}3x=9\\x+y=4\end{cases}}\)<=>\(\hept{\begin{cases}x=3\\3+y=4\end{cases}}\)<=> \(\hept{\begin{cases}x=3\\y=1\end{cases}}\)

\(16x^5-8x^3+x=0\)(1)  <=> \(x\left(16x^4-8x^2+1\right)=0\)

<=> \(x_1=0\)hoac \(16x^4-8x^2+1=0\)

\(16x^4-8x^2+1=0\)

Dat \(x^2=t\left(t\ge0\right)\)phuong trinh tro thanh

\(16x^2-8x+1=0\)

\(\left(a=16;b'=\frac{b}{2}=-\frac{8}{2}=-4:c=1\right)\)

\(\Delta'=b'^2-ac=\left(-4\right)^2-16\cdot1=16-16=0\)

Phuong trinh co nghiem kep t1 =t2=\(-\frac{b'}{a}=-\frac{-4}{1}=4\)(thoa)

Voi t=4 ta duoc

\(x^2=4\)<=> \(x_2=2,x_3=-2\)

Vay nghiem cua phuong trinh (1) la \(x_1=0,x_2=2,x_3=-2\)

18 tháng 11 2019

Bài 2:

\(\frac{1}{\sqrt[3]{81}}\cdot P=\frac{1}{\sqrt[3]{9\cdot9\cdot\left(a+2b\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(b+2c\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(c+2a\right)}}\)

\(\ge\frac{3}{a+2b+9+9}+\frac{3}{b+2c+9+9}+\frac{3}{c+2a+9+9}\ge3\left(\frac{9}{3a+3b+3c+54}\right)=\frac{1}{3}\)

\(\Rightarrow P\ge\sqrt[3]{3}\)

Dấu bằng xẩy ra khi a=b=c=3

18 tháng 11 2019

Bài 1: 

 \(ab+bc+ca=5abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=5\)

Theo bđt côsi-shaw ta luôn có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge\frac{25}{x+y+z+t+k}\)(x=y=z=t=k>0 ) (*)

\(\Leftrightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)

Áp dụng bđt AM-GM ta có:

 \(\hept{\begin{cases}x+y+z+t+k\ge5\sqrt[5]{xyztk}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge5\sqrt[5]{\frac{1}{xyztk}}\end{cases}}\)

\(\Rightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)

\(\Rightarrow\)(*) luôn đúng

Từ (*) \(\Rightarrow\frac{1}{25}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\le\frac{1}{x+y+z+t+k}\)

Ta có: \(P=\frac{1}{2a+2b+c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\)

Mà \(\frac{1}{2a+2b+c}=\frac{1}{a+a+b+b+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\frac{1}{a+2b+2c}=\frac{1}{a+b+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\frac{1}{2a+b+2c}=\frac{1}{a+a+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow P\le\frac{1}{25}\left[5.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=1\)

\(\Rightarrow P\le1\left(đpcm\right)\)Dấu"="xảy ra khi a=b=c\(=\frac{3}{5}\)

      

26 tháng 9 2020

a) Ta có: \(x=9\)thỏa mãn đk 

\(\Rightarrow\)Thay \(x=9\)vào biểu thức ta được: 

\(A=\frac{3\sqrt{9}}{1-\sqrt{9}}=\frac{9}{-2}=\frac{-9}{2}\)

b) Với x thỏa mãn ĐKXĐ thì ta có:

\(B=\frac{1}{\sqrt{x}+2}-\frac{x+12}{4-x}-\frac{4}{\sqrt{x}-2}\)

\(=\frac{1}{\sqrt{x}+2}+\frac{x+14}{x-4}-\frac{4}{\sqrt{x}-2}\)

\(=\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{x+12}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{4\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\left(\sqrt{x}-2\right)+\left(x+12\right)-4\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}-2+x+12-4\sqrt{x}-8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x-3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)

26 tháng 9 2020

1. x = 9 => A = \(\frac{3\sqrt{9}}{1-\sqrt{9}}=\frac{9}{-2}=-\frac{9}{2}\)

2. \(B=\frac{1}{\sqrt{x}+2}-\frac{x+12}{4-x}-\frac{4}{\sqrt{x}-2}=\frac{\sqrt{x}-2+x+12-4\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x-3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{x-\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)

3. \(AB>-\frac{3}{4}\) <=> \(\frac{3\sqrt{x}}{1-\sqrt{x}}\cdot\frac{\sqrt{x}-1}{\sqrt{x}+2}>-\frac{3}{4}\)

<=> \(-\frac{3\sqrt{x}}{\sqrt{x}+2}+\frac{3}{4}>0\)

<=> \(\frac{12\sqrt{x}-3\sqrt{x}-4}{4\left(\sqrt{x}+2\right)}< 0\)

<=> \(\frac{9\sqrt{x}-4}{4\sqrt{x}+8}< 0\)

Do \(4\sqrt{x}+8>0\)với mọi x => \(9\sqrt{x}-4< 0\) <=> \(x< \frac{16}{81}\)