Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\sqrt{2-\sqrt{3}}.\left(\sqrt{6}+\sqrt{2}\right)\)
\(=\sqrt{\frac{4-2\sqrt{3}}{2}}.\left[\sqrt{2}.\left(\sqrt{3}+\sqrt{1}\right)\right]\)
\(=\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{2}}.\sqrt{2}.\left(\sqrt{3}+1\right)\)
\(=\frac{\sqrt{3}-1}{\sqrt{2}}.\sqrt{2}\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)
\(D=\frac{8+2\sqrt{2}}{3-\sqrt{2}}-\frac{2+3\sqrt{2}}{\sqrt{2}}+\frac{\sqrt{2}}{1-\sqrt{2}}\)
\(=\frac{\left(8+2\sqrt{2}\right).\left(3+\sqrt{2}\right)}{9-2}-\frac{\sqrt{2}.\left(2+3\sqrt{2}\right)}{2}+\frac{\sqrt{2}.\left(1+\sqrt{2}\right)}{1-2}\)
\(=\frac{24+14\sqrt{2}+4}{7}-\frac{2\sqrt{2}+6}{2}-\frac{\sqrt{2}+2}{1}\)
\(=\frac{28+14\sqrt{2}}{7}-\sqrt{2}-3-\sqrt{2}-2\)
\(=4+2\sqrt{2}-2\sqrt{2}-5\)
\(=-1\)
1. Trục căn thức ở mẫu:
\(A=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+....+\frac{1}{\sqrt{2001}+\sqrt{2005}}+\frac{1}{\sqrt{2005}+\sqrt{2009}}\)
=\(\frac{\sqrt{5}-1}{4}+\frac{\sqrt{9}-\sqrt{5}}{4}+\frac{\sqrt{13}-\sqrt{9}}{4}+....+\frac{\sqrt{2005}-\sqrt{2001}}{4}+\frac{\sqrt{2009}-\sqrt{2005}}{4}\)
\(=\frac{\sqrt{2009}-1}{4}\)
2/ \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
=> \(x^3=\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^3\)
\(=3+2\sqrt{2}+3-2\sqrt{2}+3\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right).\sqrt[3]{3+2\sqrt{2}}.\sqrt[3]{3-2\sqrt{2}}\)
\(=6+3x\)
=> \(x^3-3x=6\)
=> \(B=x^3-3x+2000=6+2000=2006\)
\(A=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+\frac{\sqrt{9}-\sqrt{13}}{9-13}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)
\(A=\frac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+\sqrt{9}-\sqrt{13}+...+\sqrt{2001}-\sqrt{2005}}{-4}\)
\(A=\frac{1-\sqrt{2005}}{-4}=\frac{\sqrt{2005}-1}{4}\)
a, Ta có : \(x=\sqrt{3+2\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}=4\)
Thay x = 4 => \(\sqrt{x}=2\) vào B ta được :
\(B=\frac{2+5}{2-3}=-7\)
b, Ta có : Với \(x\ge0;x\ne9\)
\(A=\frac{4}{\sqrt{x}+3}+\frac{2x-\sqrt{x}-13}{x-9}-\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\frac{4\left(\sqrt{x}-3\right)+2x-\sqrt{x}-13-\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}\)
\(=\frac{4\sqrt{x}-12+2x-\sqrt{x}-13-x-3\sqrt{x}}{x-9}=\frac{x-25}{x-9}\)
Lại có \(P=\frac{A}{B}\Rightarrow P=\frac{\frac{x-25}{x-9}}{\frac{\sqrt{x}+5}{\sqrt{x}-3}}=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)
\(a.\sqrt{\frac{2-\sqrt{3}}{2}}+\frac{1-\sqrt{3}}{2}\)
\(=\sqrt{\frac{2\left(2-\sqrt{3}\right)}{4}}+\frac{1-\sqrt{3}}{2}\)
\(=\frac{\sqrt{4-2\sqrt{3}}}{2}+\frac{1-\sqrt{3}}{2}\)
\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}+\frac{1-\sqrt{3}}{2}\)
\(=\frac{\sqrt{3}-1+1-\sqrt{3}}{2}\) ( Vì \(\sqrt{3}-1>0\))
\(=0\)
b) \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)
\(=\frac{2-\sqrt{3}}{2^2-\left(\sqrt{3}\right)^2}+\frac{\sqrt{3}}{3}-\frac{2\left(3-\sqrt{3}\right)}{3^2-\left(\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+\sqrt{3}-\frac{3-\sqrt{3}}{3}\)
\(=\frac{6-3+\sqrt{3}}{3}\)
\(=\frac{3+\sqrt{3}}{3}=\frac{\sqrt{3}+1}{\sqrt{3}}\)
c) \(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)
\(=\frac{2\left(2-\sqrt{3}\right)}{1}+\frac{13\left(1+\sqrt{3}\right)}{13}+2\sqrt{3}\)
\(=4-2\sqrt{3}+1-\sqrt{3}+2\sqrt{3}\)
\(=5-\sqrt{3}\)
\(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
\(\Leftrightarrow C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)
\(\Leftrightarrow C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(\Leftrightarrow C=\left|\sqrt{3}-1\right|-\left|2+\sqrt{3}\right|\)
\(\Leftrightarrow C=\sqrt{3}-1-2-\sqrt{3}\)
\(\Leftrightarrow C=-3\)
- \(\frac{2+\sqrt{2}}{1+\sqrt{2}}=\frac{\sqrt{2}\left(1+\sqrt{2}\right)}{1+\sqrt{2}}=\sqrt{2}\)
- \(\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=-\sqrt{5}\)
- \(\frac{2\sqrt{3}-\sqrt{6}}{1-\sqrt{3}}=\frac{-\sqrt{6}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=-\sqrt{6}\)
- \(\frac{a-\sqrt{a}}{1-\sqrt{a}}=\frac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}=-\sqrt{a}\)
- \(\frac{p-2\sqrt{p}}{\sqrt{p}-2}=\frac{\sqrt{p}\left(\sqrt{p}-2\right)}{\sqrt{p}-2}=\sqrt{p}\)
a) \(\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}=\frac{\sqrt{3}-1}{\sqrt{2}\left(\sqrt{3}-1\right)}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}\)
b) \(\frac{1}{2\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}=\frac{2\sqrt{3}}{12}+\frac{2\sqrt{3}}{6}-\frac{6-2\sqrt{3}}{6}\)
\(=\frac{2\sqrt{3}}{12}+\frac{4\sqrt{3}}{12}-\frac{12-4\sqrt{3}}{12}=\frac{-12+10\sqrt{3}}{12}=\frac{-6+5\sqrt{3}}{6}\)
\(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}+\frac{2}{3+\sqrt{3}}\)
\(=\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\frac{1}{\sqrt{3}}+\frac{2}{\sqrt{3}\left(\sqrt{3}+1\right)}\)
\(=2-\sqrt{3}+\frac{\sqrt{3}+1}{\sqrt{3}\left(\sqrt{3}+1\right)}+\frac{2}{\sqrt{3}\left(\sqrt{3}+1\right)}\)
\(=2-\sqrt{3}+\frac{\sqrt{3}+3}{3+\sqrt{3}}\)
\(=2-\sqrt{3}+1=3-\sqrt{3}\)
a , <=> (2-√3)/[(2+√3)(2-√3)] +(1/√3)+[2*(3-√3)]/[(3+√3)*(3-√3)]
<=> 2-√3 + (√3)/3 +(6-2√3)/(9-3)
<=> 2-√3 + (√3)/3+(6-2√3)/6
<=> [ 6(2-√3)+2√3+6-√3)]/6
<=> (18-6√3)/6
<=> 6*(3-√3)/6
<=> 3-√3