Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\( a)A = \dfrac{{a - \sqrt a - 6}}{{4 - a}} - \dfrac{1}{{\sqrt a - 2}}\\ A = \dfrac{{a + 2\sqrt a - 3\sqrt a - 6}}{{\left( {2 - \sqrt a } \right)\left( {2 + \sqrt a } \right)}} - \dfrac{1}{{\sqrt a - 2}}\\ A = \dfrac{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 3} \right)}}{{\left( {2 - \sqrt a } \right)\left( {2 + \sqrt a } \right)}} - \dfrac{1}{{\sqrt a - 2}}\\ A = - \dfrac{{\sqrt a - 3}}{{\sqrt a - 2}} - \dfrac{1}{{\sqrt a - 2}}\\ A = - \dfrac{{\sqrt a - 2}}{{\sqrt a - 2}} = - 1 \)
\( b)B = \dfrac{1}{{\sqrt x - 1}} + \dfrac{1}{{\sqrt x + 1}} - \dfrac{2}{{x - 1}}\\ B = \dfrac{1}{{\sqrt x - 1}} + \dfrac{1}{{\sqrt x + 1}} - \dfrac{2}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{\sqrt x + 1 + \sqrt x - 1 - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{2\sqrt x - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{2\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} = \dfrac{2}{{\sqrt x + 1}} \)
\(\sqrt{2x+7}\)xác định khi \(2x+7\ge0\)
\(\Leftrightarrow2x\ge-7\)
\(\Leftrightarrow x\ge\frac{-7}{2}\)
vậy \(x\ge\frac{-7}{2}\)thì \(\sqrt{2x+7}\)xác định
\(\sqrt{\left(2x-1\right)^2}=3\)
\(\left|2x-1\right|=3\)
\(\Rightarrow\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
vậy \(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
\(P=\left(\frac{1}{\sqrt{a}+2}+\frac{1}{\sqrt{a}-2}\right):\frac{1}{a-4}\)
\(P=\left(\frac{\sqrt{a}-2}{a-4}+\frac{\sqrt{a}+2}{a-4}\right):\frac{1}{a-4}\)
\(P=\left(\frac{\sqrt{a}-2+\sqrt{a}+2}{a-4}\right):\frac{1}{a-4}\)
\(P=\frac{2\sqrt{a}.\left(a-4\right)}{a-4}\)
\(P=2\sqrt{a}\)
vậy \(P=2\sqrt{a}\)
Ta có :
\(\frac{\sqrt{a}+2}{\sqrt{a}+3}-\frac{5}{a+\sqrt{a}-6}+\frac{1}{2-\sqrt{a}}\)
\(=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}-\frac{5}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
\(-\frac{\sqrt{a}+3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
\(=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
\(=\frac{a-2^2-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
\(=\frac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
\(=\frac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
\(=\frac{\sqrt{a}-4}{\sqrt{a}-2}\)
Bài 1:
a) \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
b) \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)
\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)
c) ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)
\(=1-a+a=1\)
\(P=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\cdot\left(\sqrt{a}-1\right)}:\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+4}\)
\(=\frac{\sqrt{a}-2}{3\sqrt{a}}\)
a) Ta có: \(A=\frac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\frac{\sqrt{x}+3}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{3x+3\sqrt{x}-9}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\frac{3x+8\sqrt{x}-3\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}\left(3\sqrt{x}+8\right)-\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(3\sqrt{x}+8\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{3\sqrt{x}+8}{\sqrt{x}+2}\)
b) Ta có: \(x=3+2\sqrt{2}\)
\(=1+2\cdot1\cdot\sqrt{2}+2\)
\(=\left(1+\sqrt{2}\right)^2\)
Thay \(x=\left(1+\sqrt{2}\right)^2\) vào biểu thức \(A=\frac{3\sqrt{x}+8}{\sqrt{x}+2}\), ta được:
\(A=\frac{3\cdot\sqrt{\left(1+\sqrt{2}\right)^2}+8}{\sqrt{\left(1+\sqrt{2}\right)^2}+2}\)
\(=\frac{3\cdot\left|1+\sqrt{2}\right|+8}{\left|1+\sqrt{2}\right|+2}\)
\(=\frac{3\left(1+\sqrt{2}\right)+8}{1+\sqrt{2}+2}\)
\(=\frac{3+3\sqrt{2}+8}{3+\sqrt{2}}\)
\(=\frac{11+3\sqrt{2}}{3+\sqrt{2}}=\frac{27-2\sqrt{2}}{7}\)
Vậy: Khi \(x=3+2\sqrt{2}\) thì \(A=\frac{27-2\sqrt{2}}{7}\)