Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2b^2c^2+\left(a+1\right)\left(1+b\right)\left(1+c\right)\ge a+b+c+ab+bc+ca+3\)
\(\Leftrightarrow\left(abc\right)^2+abc-2\ge0\Leftrightarrow\left(abc+2\right)\left(abc-1\right)\ge0\Leftrightarrow abc\ge1\)
Áp dụng BĐT Cosi ta có:
\(\frac{a^3}{\left(b+2c\right)\left(2c+3a\right)}+\frac{b+2c}{45}+\frac{2c+3a}{75}\ge3\sqrt[3]{\frac{a^3}{\left(b+2c\right)\left(2c+3b\right)}\cdot\frac{b+2c}{45}\cdot\frac{2c+3a}{75}}=\frac{a}{5}\left(1\right)\)
Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(c+2a\right)\left(2a+3b\right)}+\frac{c+2a}{45}+\frac{2a+3b}{75}\ge\frac{b}{5}\left(2\right)\\\frac{c^3}{\left(a+2b\right)\left(2b+3c\right)}+\frac{a+2b}{45}+\frac{2b+3c}{75}\ge\frac{c}{5}\left(3\right)\end{cases}}\)
Từ (1)(2)(3) ta có:
\(P+\frac{2\left(a+b+c\right)}{15}\ge\frac{a+b+c}{5}\Leftrightarrow P\ge\frac{1}{15}\left(a+b+c\right)\)
Mà \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow S\ge\frac{1}{5}\)
Dấu "=" xảy ra <=> a=b=c=1
Rút gọn:
.\(A=\left(a.\frac{a^3-2b^3}{a^3+b^3}\right)^3+\left(b.\frac{2a^3-b^3}{a^3+b^3}\right)+b^3\)
Áp dụng Bất đẳng thức Cauchy Schwarz dạng Engel ta có :
\(\frac{a^2}{a+2b}+\frac{b^2}{b+2a}\ge\frac{\left(a+b\right)^2}{a+2b+b+2a}=\frac{\left(a+b\right)^2}{3\left(a+b\right)}\)
\(2\left(\frac{a^2}{2a+b}+\frac{b^2}{2b+a}\right)\ge2\left(\frac{\left(a+b\right)^2}{2a+b+2b+a}\right)=2.\frac{\left(a+b\right)^2}{3\left(a+b\right)}\)
Cộng theo vế các bất đẳng thức cùng chiều ta được :
\(\left(\frac{a^2}{a+2b}+\frac{b^2}{b+2a}\right)+2\left(\frac{a^2}{2a+b}+\frac{b^2}{2b+a}\right)\ge\frac{\left(a+b\right)^2}{3\left(a+b\right)}+2.\frac{\left(a+b\right)^2}{3\left(a+b\right)}\)
Vậy ta có ngay điều phải chứng minh
Ta có:
\(B=\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}+\sqrt{b}\right)^3}+2a\sqrt{a}+b\sqrt{b}}{a\sqrt{a}+b\sqrt{b}}+\frac{3\left(\sqrt{ab}-b\right)}{a-b}\)
\(=\frac{\frac{\left(\sqrt{a}+\sqrt{b}\right)^3\left(\sqrt{a}-\sqrt{b}\right)^3}{\left(\sqrt{a}+\sqrt{b}\right)^3}+2a\sqrt{a}+b\sqrt{b}}{a\sqrt{a}+b\sqrt{b}}+\frac{3\left(\sqrt{ab}-b\right)}{a-b}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^3+2a\sqrt{a}+b\sqrt{b}}{a\sqrt{a}+b\sqrt{b}}+\frac{3\left(\sqrt{ab}-b\right)}{a-b}\)
\(=\frac{3a\sqrt{a}-3a\sqrt{b}+3\sqrt{a}b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}+\frac{3\left(\sqrt{ab}-b\right)}{a-b}\)
\(=\frac{3\sqrt{a}\left(a-\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}+\frac{3\left(\sqrt{ab}-b\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{3\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{3\left(\sqrt{ab}-b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{3\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)+3\left(\sqrt{ab}-b\right)}{a-b}\)
\(=\frac{3a-3b}{a-b}\)
\(=3\)
=.= hok tốt!!
Đặt A=\(\left(\frac{-a}{2}+\frac{b}{3}+\frac{c}{6}\right)^3+\left(\frac{a}{3}+\frac{b}{6}-\frac{c}{2}\right)^3+\left(\frac{a}{6}-\frac{b}{2}+\frac{c}{3}\right)^3\)
\(=\left(\frac{-3a+2b+c}{6}\right)^3+\left(\frac{2a+b-3c}{6}\right)^3+\left(\frac{a-3b+2c}{6}\right)^3\)
\(=\left(\frac{-3a+2b+c+2a+b-3c+a-3b+2c}{6}\right)^3-\frac{\left(-a+3b-2c\right)\left(3a-2b-c\right)\left(-2a-b+3c\right)}{72}\)
(Hằng đẳng thức)
\(=0-\frac{\left(-a+3b-2c\right)\left(3a-2b-c\right)\left(-2a-b+3c\right)}{72}\)
\(\Rightarrow\frac{\left(a-3b+2c\right)\left(-3a+2b+c\right)\left(2a+b-3c\right)}{72}=\frac{1}{8}\)
\(\Leftrightarrow\left(a-3b+2c\right)\left(2a+b-3c\right)\left(-3a+2b+c\right)=9\)(đpcm).