Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
- a,(2+xy)^2=4+4xy+x^2y^2
- b,(5-3x)^2=25-30x+9x^2
- d,(5x-1)^3=125x^3 - 75x^2 + 15x^2 - 1
a) \(x.\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)=x.\left(x^2-16\right)-\left(x^4-1\right)=x^3-16x-x^4+1\)
ý này ko rút gọn được hết đâu.
b) \(\left(y-3\right)\left(y+3\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)=\left(y^2-9\right)\left(y^2+9\right)-\left(y^4-4\right)\)
\(=y^4-81-y^4+4=-77\)
c) \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2bc=a^2+b^2+c^2+2ab-2bc-2ac-a^2+2ac-c^2-2ab+2bc=b^2\)
Bài 1:
a) \(\left(a+b\right)^2-\left(a-b\right)^2\)
\(=\left(a+b+\left(a-b\right)\right).\left(a+b-\left(a-b\right)\right)\)
\(=2a.2b\)
\(=4ab\)
Câu 1:
a) (a +b )2 - ( a -b )2
=a2+b2-a2+b2
=2b2
b) (a + b )3- ( a - b )3 - 2b3
=a3+b3-a+b3-2b3
=a3-a
c) ( x+y+z)2 - 2(x+y+z)(x+y) + (x + y )2
=x2+xy+xz+xy+y2+yz+xz+yz+z2-2.(x2+xy+xz+xy+y2+yz)+x2+xy+xy+y2
=x2+y2+z2+2xy+2xz+2yz-2x2-2y2-4xy-2xz-2yz+x2+2xy+y2
=0
Bài 1:
a, \(\left(x-y\right)^2=x^2+y^2+2xy-4xy=\left(x+y\right)^2-4xy\)
Thay \(x+y=3,xy=-4\), ta có:
\(\left(x-y\right)^2=3^2-4.\left(-4\right)=25\)
b, \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)
Thay \(x+y=3,xy=-4\),ta có:
\(x^3+y^3=3^3-3.\left(-4\right).3=63\)
c, Giải \(\left\{{}\begin{matrix}x+y=3\\xy=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^3-y^3=65\\x^3-y^3=-65\end{matrix}\right.\)
Bài 1:
\(a,\left(x-y\right)^2=\left(x+y\right)^2-4xy=3^2-4.\left(-4\right)=25\)
\(b,x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=3\left[\left(x+y\right)^2-3xy\right]\)
\(=3\left(3^2-3.\left(-4\right)\right)=63\)
\(c,\)\(x+y=3\Rightarrow x=3-y\)
Thay vào xy = -4 ,có :
\(\left(3-y\right)y=-4\Leftrightarrow-y^2+3y+4=0\Leftrightarrow\left[{}\begin{matrix}y=4\\y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3-4=-1\\x=3-\left(-1\right)=4\end{matrix}\right.\)
\(TH1:x^3-y^3=\left(4^3\right)-\left(-1\right)^3=65\)
\(TH2:x^3-y^3=\left(-1\right)^3-4^3=-65\)
Bài 2:
\(A=x^2-3x=\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{4}\)\(=\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)
Dấu = xảy ra \(\Leftrightarrow x=-\frac{3}{2}\)
Vậy \(Min_A=-\frac{9}{4}\Leftrightarrow x=-\frac{3}{2}\)
\(B=2x^2+x=2\left(x^2+\frac{1}{2}x+\frac{1}{16}\right)-\frac{1}{8}\)
\(=2\left(x+\frac{1}{4}\right)^2-\frac{1}{8}\ge-\frac{1}{8}\)
Dấu = xảy ra \(\Leftrightarrow x=-\frac{1}{4}\)
\(Min_B=-\frac{1}{8}\Leftrightarrow x=-\frac{1}{4}\)
a) Ta có: \(\left(3-xy^2\right)^2-\left(2+xy^2\right)^2\)
\(=\left[\left(3-xy^2\right)-\left(2+xy^2\right)\right]\cdot\left[\left(3-xy^2\right)+\left(2+xy^2\right)\right]\)
\(=\left(3-xy^2-2-xy^2\right)\cdot\left(3-xy^2+2+xy^2\right)\)
\(=5\cdot\left(1-2xy^2\right)\)
\(=5-10xy^2\)
b) Ta có: \(9x^2-\left(3x-4\right)^2\)
\(=\left[3x-\left(3x-4\right)\right]\left[3x+\left(3x-4\right)\right]\)
\(=\left(3x-3x+4\right)\cdot\left(3x+3x-4\right)\)
\(=4\cdot\left(6x-4\right)\)
\(=24x-16\)
c) Ta có: \(\left(a-b^2\right)\left(a+b^2\right)\)
\(=a^2-b^4\)
d) Ta có: \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)
\(=\left(a^2+2a\right)^2-9\)
\(=a^4+4a^3+4a^2-9\)
e) Ta có: \(\left(x-y+6\right)\left(x+y-6\right)\)
\(=x^2+xy-6x-yx-y^2+6y+6x+6y-36\)
\(=x^2-y^2+12y-36\)
f) Ta có: \(\left(y+2z-3\right)\left(y-2z-3\right)\)
\(=\left(y-3\right)^2-\left(2z\right)^2\)
\(=y^2-6y+9-4z^2\)
g) Ta có: \(\left(2y-5\right)\left(4y^2+10y+25\right)\)
\(=\left(2y\right)^3-5^3\)
\(=8y^3-125\)
h) Ta có: \(\left(3y+4\right)\left(9y^2-12y+16\right)\)
\(=\left(3y\right)^3+4^3\)
\(=27y^3+64\)
i) Ta có: \(\left(x-3\right)^3+\left(2-x\right)^3\)
\(=\left(x-3\right)^3-\left(x-2\right)^3\)
\(=x^3-9x^2+27x-27-\left(x^3-6x^2+12x-8\right)\)
\(=x^3-9x^2+27x-27-x^3+6x^2-12x+8\)
\(=-3x^2+15x-19\)
j) Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left[\left(x+y\right)-\left(x-y\right)\right]\cdot\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\cdot\left(3x^2+y^2\right)\)
\(=6x^2y+2y^3\)
Bài 2 :
Câu a : \(y\left(y^3+y^2-y-2\right)-\left(y^2-2\right)\left(y^2+y+1\right)\)
\(=y^4+y^3-y^2-2y-y^4-y^3-y^2+2y^2+2y+2\)
\(=2\) \(\Rightarrow\) ko phụ thuộc vào biến .
Câu b : \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2\)
\(=29\Rightarrow\) ko thuộc vào biến
Câu c : \(3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)\)
\(=3x^2+15x-3x^2+3x-18x+18\)
\(=18\) \(\Rightarrow\) ko thuộc vào biến
Câu d : \(\left(2x+6\right)\left(4x^2-12x+36\right)-8x^3+5\)
\(=8x^3-24x^2+72x+24x^2-72x+216-8x^3+5\)
\(=221\) \(\Rightarrow\) không thuộc vào biến
câu 1) a) \(\left(x^2+2xy+y^2\right)\left(x+y\right)=\left(x+y\right)^2\left(x+y\right)=\left(x+y\right)^3\)
b) \(y\left(y^3+y^2-3y-2\right)+\left(y^2-2\right)\left(y^2+y-1\right)\)
\(=y^4+y^3-3y^2-2y+y^4+y^3-y^2-2y^2-2y+2\)
\(=2y^4+2y^3-6y^2-4y+2=2y\left(y^3+y^2-3y-2\right)+2\)
\(=2y\left(y+2\right)\left(y^2-y-1\right)+2=2\left(y^2+2y\right)\left(y^2-y-1\right)+2\)
\(=2\left(y^2+2y\right)\left(y^2-y-1+1\right)=2\left(y^2+2y\right)\left(y^2-y\right)\)
c) \(6x^2-\left(2x+5\right)\left(3x-2\right)=6x^2-\left(6x^2-4x+15x-10\right)\)
\(\Leftrightarrow6x^2-6x^2+4x-15x+10=-11x+10\)
d) \(\left(2x-1\right)\left(3x+1\right)+\left(3x+4\right)\left(3-2x\right)\)
\(\)\(=6x^2+2x-3x-1+9x-6x^2+12-8x=11\)
e) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)\)
\(=21x-15x^2-35+25x-\left(10x-15x^2+4-6x\right)\)
\(21x-15x^2-35+25x-10x+15x^2-4+6x=42x-39\)
a) \(x\left(x-3\right)\left(x+3\right)-\left(x^2-2\right)\left(x^2+2\right)\)
\(=x\left(x^2-9\right)-x^4+4\)
\(=x^3-9x-x^4+4\)
\(=-x^4+x^3-9x+4\)
b) \(\left(y+2\right)\left(y-2\right)\left(y^2+4\right)-\left(y^2-3\right)\left(y^2+3\right)\)
\(=\left(y^2-4\right)\left(y^2+4\right)-y^4+9\)
\(=y^4-16-y^4+9\)
\(=-7\)