K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2021

A = (2x - 1)x + (2x - 1)2 = 2x + 4x -2 = 6x - 2 (x là chữ x). Sai thì thông cảm nha. Chúc bn học tốt!

18 tháng 3 2022

a, ĐKXĐ:\(\left\{{}\begin{matrix}x^2-1\ne0\\x+1\ne0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm1\\x\ne-1\\x\ne1\end{matrix}\right.\Leftrightarrow x\ne\pm1\)

b, \(P=\dfrac{2x^2}{x^2-1}+\dfrac{x}{x+1}-\dfrac{x}{x-1}\)

\(\Rightarrow P=\dfrac{2x^2}{\left(x+1\right)\left(x-1\right)}+\dfrac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow P=\dfrac{2x^2}{\left(x+1\right)\left(x-1\right)}+\dfrac{x^2-x}{\left(x+1\right)\left(x-1\right)}-\dfrac{x^2+x}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow P=\dfrac{2x^2+x^2-x-x^2-x}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow P=\dfrac{2x^2-2x}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow P=\dfrac{2x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow P=\dfrac{2x}{x+1}\)

c, Thay x=2 vào P ta có:

\(P=\dfrac{2x}{x+1}=\dfrac{2.2}{2+1}=\dfrac{4}{3}\)

18 tháng 3 2022

Bài `1:`

`a)`

Để `P` có nghĩa thì:

`{(x^2-1\ne0),(x+1\ne0),(x-1\ne0):}`

`<=>x\ne+-1`

`b)`

`P=(2x^2)/(x^2-1)+x/(x+1)-x/(x-1)(x\ne+-1)`

`P=(2x^2)/((x-1)(x+1))+(x.(x-1))/((x+1)(x-1))-(x.(x+1))/((x-1)(x+1))`

`P=(2x^2+x^2-x-x^2-x)/((x-1)(x+1))`

`P=(2x^2-2x)/((x-1)(x+1))`

`P=(2x.(x-1))/((x-1)(x+1))=2x/(x+1)`

`c)`

Với `x=2`

`P=(2.2)/(2+1)=4/3`

22 tháng 2 2022

`Answer:`

`a)`

`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`

`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`

`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`

`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`

`=>A=-2x^2+28x-6`

`b)`

`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`

`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`

`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`

`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`

Thay `x=-7` vào ta được:

`B=10(-7)^2-2(-7)^3-7(-7)-6`

`=>B=10.49-2(-343)+49-6`

`=>B=490+686+49-6`

`=>B=1219`

a: Ta có: \(P=\left(x-1\right)^2-4x\left(x+1\right)\left(x-1\right)+3\)

\(=x^2-2x+1-4x\left(x^2-1\right)+3\)

\(=x^2-2x+4-4x^3+4x\)

\(=-4x^3+x^2+2x+4\)

b: Thay x=-2 vào P, ta được:

\(P=-4\cdot\left(-8\right)+4-4+4=36\)

24 tháng 3 2020

-2 nhớ link cho mình nha

24 tháng 3 2020

A=x(1-x)+(x+1)(x-2)

A=x-x^2+x^2-x-2

A=-2

Nhớ k nha

13 tháng 6 2018

a, \(M=\sqrt{x^2-4x+4}-\sqrt{x^2+4x+4}\)      (ĐK : \(\forall x\in R\))

           \(=\sqrt{\left(x-2\right)^2}-\sqrt{\left(x+2\right)^2}\)

     * Nếu x\(\ge2\Rightarrow M=x-2-x-2=-4\)

     *Nếu x<2   => M=2-x-x-2=-2x

b,Để M=2\(\ne-4\)

     =>M=-2x

    =>-2x=-4

    =>x=2

__________________________________________________________________________________________

P=\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)

  \(=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)

    \(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)

     * Nếu \(x\ge2\Rightarrow P=\sqrt{x-1}+1+\sqrt{x-1}-1=2\sqrt{x-1}\)

    * Nếu x<2  =>P=\(\sqrt{x-1}+1+1-\sqrt{x-1}=2\)

             VẬY.......

 Tk nha!

19 tháng 9 2019

\(A=\frac{x+3}{x^2-1}-\frac{x+1}{x^2-x}=\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{x\left(x-1\right)}\)

     \(=\frac{x\left(x+3\right)-\left(x+1\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}\)

        \(=\frac{x^2+3x-x^2-2x-1}{x\left(x-1\right)\left(x+1\right)}\)

           \(=\frac{1}{x\left(x+1\right)}\)

Chúc bạn học tốt !!!

19 tháng 9 2019

Ta có: A = \(\frac{x+3}{x^2-1}-\frac{x+1}{x^2-x}\)

=> A = \(\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{x\left(x-1\right)}\)

=> A = \(\frac{x\left(x+3\right)}{x\left(x-1\right)\left(x+1\right)}-\frac{\left(x+1\right)^2}{x\left(x-1\right)\left(x+1\right)}\)

=> A = \(\frac{x\left(x+3\right)-\left(x+1\right)^2}{x\left(x-1\right)\left(x+1\right)}\)

=> A  = \(\frac{x^2+3x-x^2-2x-1}{x\left(x-1\right)\left(x+1\right)}\)

=> A = \(\frac{x-1}{x\left(x-1\right)\left(x+1\right)}\)

=> A = \(\frac{1}{x\left(x+1\right)}\) (Đk: x \(\ne\)0 hoặc x \(\ne\)-1)

20 tháng 2 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne\pm1\\x\ne-\frac{1}{2}\end{cases}}\)

a) \(A=\left(\frac{1}{x-1}+\frac{x}{x^3-1}\cdot\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)

\(\Leftrightarrow A=\left(\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\frac{2x+1}{\left(x+1\right)^2}\)

\(\Leftrightarrow A=\frac{x+1+x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(x+1\right)^2}{2x+1}\)

\(\Leftrightarrow A=\frac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)\left(2x+1\right)}\)

\(\Leftrightarrow A=\frac{x+1}{x-1}\)

b) Thay \(x=\frac{1}{2}\)vào A, ta được :

\(A=\frac{\frac{1}{2}+1}{\frac{1}{2}-1}=\frac{\frac{3}{2}}{-\frac{1}{2}}=-3\)