Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)
\(=x^3-xy-x^3-x^2y+x^2y-xy=-2xy\)(1)
Thay \(x=\frac{1}{2};y=-100\) vào (1), ta có:
\(-2.\frac{1}{2}.-100=100\)
Mạn phép bỏ câu a :))
b) a2(b2 - a2) + b2(b2 + a2)
= a2.b2 + a2.(-a2) + b2.b2 + b2.a2
= a2.b2 - a4 + b4 + a2.b2
= a4 + 2a2b2 + b2 (hđt)
c) x2(x3 + 2y - x2y) - y(x2 - x4 + y)
= x2.x3 + x2.2y + x2.(-x2y) + (-y).x2 + (-y).(-x)4 + (-y).y
= x5 + 2x2y - x4y - x2y + x4y - y2
= x5 + (2xy2 - xy2) + (-x4y + x4y) - y2
= x5 + xy2 - y2
Câu hỏi của Fire Sky - Toán lớp 8 - Học toán với Em tham khảo tại link này nhé!
a) x(x – y) + y (x + y) = x2 – xy +yx + y2= x2+ y2
với x = -6, y = 8 biểu thức có giá trị là (-6)2 + 82 = 36 + 64 = 100
b) x(x2 – y) – x2 (x + y) + y (x2– x) = x3 – xy – x3 – x2y + yx2 – yx= (2x-2y) – (x2 -2xy +y2) =2(x-y) – (x-y)2
Với x =1/2, y = -100 biểu thức có giá trị là -2 . 1/2. (-100) = 100.
a) x(x – y) + y (x + y) = x2 – xy +yx + y2= x2+ y2
với x = -6, y = 8 biểu thức có giá trị là (-6)2 + 82 = 36 + 64 = 100
b) x(x2 – y) – x2 (x + y) + y (x2– x) = x3 – xy – x3 – x2y + yx2 – yx= (2x-2y) – (x2 -2xy +y2) =2(x-y) – (x-y)2
Với x = \(\frac{1}{2}\), y = -100 biểu thức có giá trị là -2 . \(\frac{1}{2}\). (-100) = 100.
a)\(x+y=a\Rightarrow\left(x+y\right)^2=a^2\)
\(\Rightarrow x^2+2xy+y^2=a^2\Rightarrow x^2+y^2=a^2-2xy\Rightarrow x^2+y^2=a^2-2b\)
\(A=\left(x+y\right)^2+\left(x-y\right)^2-2\left(x+y\right)\left(x-y\right)\)
\(=\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)
\(=\left[\left(x+y\right)-\left(x-y\right)\right]^2\)
\(=\left[x+y-x+y\right]^2\)
\(=\left(2y\right)^2=\left[2\left(-2\right)\right]^2=\left(-4\right)^2=16\)
\(A=\left(x+y\right)^2+\left(x-y\right)^2-2\left(x+y\right)\left(x-y\right)\)
\(A=x^2+2xy+y^2+x^2-2xy+y^2-2\left(x+y\right)\left(x-y\right)\)
\(A=x^2+2xy+y^2+x^2-2xy+y^2-\left(2x+2y\right)\left(x-y\right)\)
\(A=x^2+2xy+y^2+x^2-2xy+y^2-2x^2+2xy-2yx+2y^2\)
\(A=\left(x^2+x^2-2x^2\right)+\left(2xy-2xy+2xy-2xy\right)+\left(y^2+y^2+2y^2\right)\)
\(A=4y^2\) (1)
Thay y = -2 vào (1), ta cóL
\(A=4y^2=4.\left(-2\right)^2=16\)
Vậy: A với y = -2: 16
\(2.A=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)=x^3-xy-x^3-x^2y+x^2y-xy=-2xy\\ Thayx=\frac{1}{2};y=-100vàoAđược:A=-2.\frac{1}{2}.\left(-100\right)=100\)
\(3.x\left(5-2x\right)+2x\left(x-1\right)=15\Leftrightarrow5x-2x^2+2x^2-2x=15\Leftrightarrow3x=15\Leftrightarrow x=5\)
a, \(\left(x+y\right)^2+\left(x-y\right)^2=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2\)
b, \(\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2=\left(x-y+x+y\right)^2=4x^2\)
a) \(\left(x+y\right)^2+\left(x-y\right)^2\)
\(=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2\)
b) \(2\left(x-y\right)\left(x+y\right)+\left(x-y\right)^2+\left(x+y\right)^2\)
\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left[\left(x-y\right)^2+\left(x+y\right)^2\right]\)
\(=\left(x-y+x+y\right)^2=\left(2x\right)^2=4x^2\)