K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2020

\(A=\left(x-2\right)^3-x\left(x-1\right)\left(x-3\right)+3x^2-9x+8\) 

\(A=x^3-6x^2+12x-8-x^2+x^2-3x+3x^2-9x+8\)

\(A=x^3-6x^2+12x-3x+3x^2-9x\)

\(A=\left(-6x^2+3x^2\right)+\left(12x-3x-9x\right)+x^3\)

\(A=-3x^2+x^3\)

7 tháng 10 2021

a. 9x2 + 6x + 1 - 9x2 + 3x = 9x + 1

b. x3 - 2x2 + 4x + 2x2 - 4x + 8 - x3 + 3x = 3x + 8

5 tháng 3 2020

\(ĐKXĐ:x\ne\pm3\)

\(P=\left(\frac{x^2-3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)

\(\Leftrightarrow P=\left(\frac{x^2-3x}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(\Leftrightarrow P=\frac{\left(x^2-3x\right)+3\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x^2+9\right)}:\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x^2+9\right)}\)

\(\Leftrightarrow P=\frac{1}{x+3}:\frac{x-3}{x^2+9}\)

\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x-3\right)}\)

8 tháng 6 2016

A = (3x + y)^2 - 3y . ( 2x - 1/3y )

=2y2+9x2

B = ( x - 2 )^2 + ( x + 2 )^2 - 2. ( x - 2 ) ( x + 2)

=24

C = ( x - y ) ( x^2 + xy + y^2 ) + 2y^3

=y3+x3

D = ( x -5 ) ( x+ 5 ) -(x - 8 ) (x + 4)

=4x+7

E = (3x + 1 )^2 - 2 . ( 9x^2 - 1 ) + ( 3x - 1 ) ^2

=4

F = ( x - 3 ) ( x + 3 ) - ( x - 3 )^2

=6x-18

22 tháng 11 2021

bạn có thể chỉ cách làm luôn được hong

23 tháng 10 2021

a, \(9x+3x\left(2x^2+x-3\right)=9x+6x^3+3x^2-9x\)

b, \(\left(3x-1\right)^2-9x\left(x+1\right)=9x^2-6x+1-9x^2-9x=1-15x\)

c, \(\left(x-1\right)^2-x\left(x+1\right)=x^2-2x+1-x^2-x=1-3x\)

25 tháng 7 2021

a, `(x-3)(x^2+3x+9)-(x^2-1)(9x+27)`

`=x^3-3^3-(9x^3+27x^2-9x-27)`

`=x^3-3^3-9x^3-27x^2+9x+27`

`=-8x^3-27x^2+9x`

b, `(x-2)(x^2+2x+4)-x(x-3)(x+3)`

`=x^3-2^3-x(x^2-9)`

`=x^3-8-x^3+9x`

`=9x-8`

a) Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)-\left(x^2-1\right)\left(9x+27\right)\)

\(=x^3-27-\left(9x^3+27x^2-9x-27\right)\)

\(=x^3-27-9x^3-27x^2+9x+27\)

\(=-8x^3-27x^2+9x\)

b) Ta có: \(\left(x-2\right)\left(x^2+2x+4\right)-x\left(x-3\right)\left(x+3\right)\)

\(=x^3-8-x\left(x^2-9\right)\)

\(=x^3-8-x^3+9x\)

\(=9x-8\)

8 tháng 2 2022

ĐKXĐ: \(x\ne\pm3\)

\(P=\left[\dfrac{x\left(x+3\right)}{x^2\left(x+3\right)+9\left(x+3\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{x^2\left(x-3\right)+9\left(x-3\right)}\right]\)

\(=\left[\dfrac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\)

\(=\dfrac{x+3}{x^2+9}:\dfrac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}=\dfrac{x+3}{x^2+9}.\dfrac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}=\dfrac{x+3}{x-3}\)

Ý 2 mình k hiểu ý bạn lắm

\(P=\dfrac{x+3}{x-3}=\dfrac{x-3+6}{x-3}=1+\dfrac{6}{x-3}\in Z\)

\(\Leftrightarrow\left(x-3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

Kết hợp vs ĐKXĐ \(\Rightarrow x\in\left\{0;1;2;4;5;6;9\right\}\)