K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

Ta có : \(\frac{3.5.7+9.15.21+12.20.28}{2.4.6+6.12.18+8.16.24}=\frac{3.5.7.\left(1+3.3.3+4.4.4\right)}{2.4.6.\left(1+3.3.3+4.4.4\right)}=\frac{3.5.7}{2.4.6}=\frac{5.7}{2.4.2}=\frac{35}{16}\)

25 tháng 11 2016

Ko rút gon được nữa đâu bạn CƯNG!

 

23 tháng 3 2017

Ta có A = \(\frac{1.2.3-2.3.4+3.4.5-4.5.6+5.6.7-6.7.8}{2.4.6-4.6.8+6.8.10-8.10.12+10.12.14-12.14.16}\)

       A = \(\frac{1.2.3-2.3.4+3.4.5-4.5.6+5.6.7-6.7.8}{\left(1.2.3\right).2-\left(2.3.4\right).2+\left(3.4.5\right).2-\left(4.5.6\right).2+\left(5.6.7\right).2-\left(6.7.8\right).2}\)

       A = \(\frac{1.\left(1.2.3-2.3.4+3.4.5-4.5.6+5.6.7-6.7.8\right)}{2.\left(1.2.3-2.3.4+3.4.5-4.5.6+5.6.7-6.7.8\right)}\)

        A = \(\frac{1}{2}\)

9 tháng 10 2023

2,4,6,8,10,100,15

2,4,6,8.100-3.5.7, 49,51

1!, 2!, 3!, 4! + 5, 2023!

1 tháng 5 2018

\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

\(\Rightarrow A=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}\) \(=\frac{a^2\left(a+1\right)+\left(a+1\right)+\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}\)

          \(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

            \(=\frac{a^2+a-1}{a^2+a+1}\)

14 tháng 3 2021

a, - 151515 / 232323 = -15/23

b, 1.2.3 + 2.4.6 + 4.8.12 / 1.3.5 + 2.4.6 + 4.12.20 

= 146/341