Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3\left(x-3\right)\left(x+7\right)+\left(x+4\right)^2+48\)
\(A=3\left(x^2-4x-21\right)+\left(x^2+8x+16\right)+48\)
\(A=\left(3x^2+x^2\right)-\left(12x-8x\right)-\left(21-16-48\right)\)
\(A=4x^2-4x+43\)
\(A=\left(4x^2-4x+1\right)+42\)
\(A=\left(2x+1\right)^2+42\)
Thay \(x=\frac{1}{2}\) vao A ta duoc:
\(A=\left(2\cdot\frac{1}{2}+1\right)^2+42=46\)
\(A=3\left(x-3\right)\left(x-7\right)+\left(x+4\right)^2+48\)
\(=3x^2-13x+63+x^2+8x+16+48\)
\(=4x^2-5x+127\)
\(4\cdot0,25-5\cdot0,5+127=1-1+127=127\)
a) Ta có x^2-9 =0
=> x^2-3^2=0
=> (x-2)(x+2)=0
=> x-2=0 hoặc x+2=0
=> x=2 hoặc x=-2
Vậy....
b)x(x+2)=0
=>x=0 hoặc x+2=0
=> x=0 hoặc x=-2
Vậy ....
c) Tương tự a ...có 25=5^2
d)ta có 7x^2-28=0
=> 7*x^2 =28
<=>x^2=4
<=> x=2
Vậy .....
e ) , f) tự làm đi ...dễ mà
a) x2-9=0
=> x2=0+9=9
=> x2=9
=> x=9:3
=> x=3
c) x2-25=0
=> x2=0+25=25
=>x2=25
=> 25:2=5
=> x=5
\(e ) Để \) \(M\)\(\in\)\(Z \) \(thì\) \(1 \)\(⋮\)\(x +3\)
\(\Leftrightarrow\)\(x + 3 \)\(\in\)\(Ư\)\((1)\)\(= \) { \(\pm\)\(1 \) }
\(Lập\) \(bảng :\)
\(x +3\) | \(1\) | \(- 1\) |
\(x\) | \(-2\) | \(- 4\) |
\(Vậy : Để \) \(M\)\(\in\)\(Z\) \(thì\) \(x\)\(\in\){ \(- 4 ; - 2\) }
e) Để M \(\in\)Z <=> \(\frac{1}{x+3}\in Z\)
<=> 1 \(⋮\)x + 3 <=> x + 3 \(\in\)Ư(1) = {1; -1}
Lập bảng:
x + 3 | 1 | -1 |
x | -2 | -4 |
Vậy ....
f) Ta có: M > 0
=> \(\frac{1}{x+3}\) > 0
Do 1 > 0 => x + 3 > 0
=> x > -3
Vậy để M > 0 khi x > -3 ; x \(\ne\)3 và x \(\ne\)-3/2
\(a)\dfrac{{x + 1}}{{x - 2}} - \dfrac{{x - 1}}{{x + 2}} = \dfrac{{2\left( {{x^2} + 2} \right)}}{{{x^2} - 4}}\)
ĐKXĐ: \(x\ne\pm2\)
\(\Leftrightarrow \dfrac{{\left( {x + 1} \right)\left( {x + 2} \right) - \left( {x - 1} \right)\left( {x - 2} \right)}}{{{x^2} - 4}} = \dfrac{{2\left( {{x^2} + 2} \right)}}{{{x^2} - 4}}\\ \Leftrightarrow {x^2} + 3x + 2 - \left( {{x^2} - 3x + 2} \right) = 2{x^2} + 4\\ \Leftrightarrow 6x = 2{x^2} + 4\\ \Leftrightarrow - 2{x^2} + 6x - 4 = 0\\ \Leftrightarrow 2{x^2} - 6x + 4 = 0\\ \Leftrightarrow {x^2} - 3x + 2 = 0\\ \Leftrightarrow {x^2} - 2x - x + 2 = 0\\ \Leftrightarrow x\left( {x - 2} \right) - \left( {x - 2} \right) = 0\\ \Leftrightarrow \left( {x - 2} \right)\left( {x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 2 = 0\\ x - 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 2\left( {KTM} \right)\\ x = 1\left( {TM} \right) \end{array} \right. \)
Vậy \(x=1\)
\(b)\dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} = \dfrac{{5x - 2}}{{4 - {x^2}}} \)
ĐKXĐ: \(x\ne\pm2\)
\( \Leftrightarrow \dfrac{{\left( {x - 1} \right)\left( {x - 2} \right) - x\left( {x + 2} \right)}}{{{x^2} - 4}} = \dfrac{{2 - 5x}}{{{x^2} - 4}}\\ \Leftrightarrow {x^2} - 3x + 2 - {x^2} - 2x = 2 - 5x\\ \Leftrightarrow 0x = 0\left( {VSN} \right) \)
Vậy phương trình vô số nghiệm
\(c)\dfrac{{x - 2}}{{2 + x}} - \dfrac{3}{{x - 2}} = \dfrac{{2\left( {x - 11} \right)}}{{{x^2} - 4}}\)
ĐKXĐ: \(x\ne\pm2\)
\( \Leftrightarrow \dfrac{{\left( {x - 2} \right)\left( {x - 2} \right) - 3\left( {x + 2} \right)}}{{{x^2} - 4}} = \dfrac{{2x - 22}}{{{x^2} - 4}}\\ \Leftrightarrow {x^2} - 4x + 4 - 3x - 6 = 2x - 22\\ \Leftrightarrow {x^2} - 9x + 20 = 0\\ \Leftrightarrow {x^2} - 4x - 5x + 20 = 0\\ \Leftrightarrow x\left( {x - 4} \right) - 5\left( {x - 4} \right) = 0\\ \Leftrightarrow \left( {x - 4} \right)\left( {x - 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 4 = 0\\ x - 5 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 4\left( {TM} \right)\\ x = 5\left( {TM} \right) \end{array} \right. \)
Vậy \(x=4,x=5\)
A.(x+2y).(x+2y-1) = x^2 +4xy + 4y^2 - x - 2y
B. (x-2y).(x+2y-1) = x^2 - x - 4y^2 + 2y
C. (x-2y).(x-2y+1) = x^2 - 4xy + 4y^2 + x - 2y
D.(x+2y).(x-2y) = x^2 - 4y^2
=>....
a_ \(B=\left(x-3\right)^2+\left(x-1\right)^2\ge0\)
\(MinB=0\Rightarrow\hept{\begin{cases}x-3=0\\x-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\x=1\end{cases}}\)
b) \(C=x^2+4xy+5y^2-2y\)
\(=\left(x+2y\right)^2+y^2-2y\)
\(=\left(x+2y\right)^2+y^2-2y\ge-2y\)
\(MinC=-2y\Leftrightarrow\hept{\begin{cases}x+2y=0\\y=0\end{cases}\Rightarrow x=y=0}\)
a,<=>\(\frac{\left(2x+1\right)^2}{4}\)+\(\frac{2\left(2x-1\right)^2}{4}\)≥\(\frac{12\left(x+5\right)^2}{4}\)
<=>4x2+4x+1+2(4x2-4x+1)≥12(x2+10x+25)
<=>4x2+4x+1+8x2-8x+2≥12x2+120x+300
<=>4x2+4x+1+8x2-8x+2-12x2-120x-300≥0
<=>-124x-297≥0
<=>124x+297≤0
<=>124x≤-297
<=>x≤\(\frac{-297}{124}\)
b, Tương tự câu a
c, |5−3x|=2+x
TH1: 5-3x=2+x
<=> -3x - x = 2 - 5
<=> -4x = -3
<=> x = 3/4
TH2: 5-3x = -2 - x
<=> -3x + x = -2 - 5
<=> -2x = -7
<=> x = 7/2
\(x^2\)(\(x\) - 3) - \(x\)( 3 - \(x\))2
= \(x^3\) - 3\(x^2\) - \(x\)(9 - 6\(x\) + \(x\)2)
= \(x^3\) - 3\(x^2\) - 9\(x\) + 6\(x^2\) - \(x^3\)
= (\(x^3\) - \(x^3\)) + (6\(x^2\) - 3\(x^2\)) - 9\(x\)
= 0 + 3\(x^2\) - 9\(x\)
= 3\(x^2\) - 9\(x\)